本文已被:浏览 10次 下载 20次
投稿时间:2024-07-31 修订日期:2024-09-30
投稿时间:2024-07-31 修订日期:2024-09-30
中文摘要: 随着物理电网与网络的深度融合,电网系统越来越容易受到网络攻击的威胁,其中包括恶意流量攻击。这类攻击通过传播恶意流量,可能导致智能电网出现通信故障,因此及时准确地检测此类攻击对电力企业至关重要。本文提出了一种基于长短期记忆(long short-term memory,LSTM)深度学习模型的实时恶意流量攻击检测方法。该方法通过实时采集网络流量并提取关键特征,利用LSTM模型识别网络流量的性质,以判断网络是否遭受攻击。此外,在软件定义网络(software-defined networking,SDN)架构下构建了一个相应的原型系统。原型系统实验结果显示,该方法能有效抵御实际网络中的恶意流量攻击,提高了电网的网络安全性。
中文关键词: 网络安全、智能电网、恶意流量攻击检测、人工智能
Abstract:With the deep integration of the physical power grid and the network, the smart grid is facing a variety of cyber attacks, including malicious traffic attacks. By forwarding malicious traffic blindly, these attacks would cause communication failures in the smart grid. Therefore, it is crucial to detect such attacks in a timely and accurate manner for power enterprises. In this paper, we propose a real-time malicious traffic attack detection method based on the Long Short-Term Memory (LSTM) deep learning model. By collecting network traffic in real time and extracting key features, the proposed method is able to determine whether the network is under attack based on LSTM model. Furthermore, a corresponding prototype system was constructed under the Software-Defined Networking (SDN) architecture. Experimental results from the prototype system demonstrate that the method can effectively defend against malicious traffic attacks in actual networks, enhancing the cybersecurity of the power grid.
keywords: Cybersecurity, Industrial Internet, Malicious Traffic Attack Detection, Artificial Intelligence
文章编号: 中图分类号: 文献标志码:
基金项目:浙江省 “尖兵”、“领雁” 研发攻关计划(2022C01239)
作者 | 单位 | |
王俊峰 | 浙江华云信息科技有限公司 | Wangjunfeng@hyit.com.cn |
陈亮 | 浙江大学 | |
景峰 | 浙江华云信息科技有限公司 | |
李军 | 浙江华云信息科技有限公司 | |
阮伟* | 浙江大学 | ruanwei@zju.edu.cn |
引用文本: