本文已被:浏览 29次 下载 9次
投稿时间:2024-07-31 修订日期:2024-11-11
投稿时间:2024-07-31 修订日期:2024-11-11
中文摘要: 由于新能源无人值守场站巡检数据构成较为复杂,导致巡检结果的可靠性难以得到保障,为此,提出基于AI机器视觉技术的新能源无人值守场站自动巡检方法。利用多个基本分类器组成的初级学习器对视觉图像类别进行初次判断时,将随机森林作为具体的集成学习方法,通过构建多个决策树分类器,基于输出结果中的最频繁出现标签,判断新能源无人值守场站图像所属类别;基于信息增益选择最优新能源无人值守场站视觉图像的划分特征后,利用ID3决策树算法输出具体的巡检结果。在测试结果中,mAP始终稳定在0.95以上,从整体角度分析,mAP均值分别高于对照组0.0733和0.0903,具有较高的可靠性。
Abstract:Due to the complex composition of inspection data of new energy unattended field station, the reliability of inspection results is difficult to be guaranteed. Therefore, an automatic inspection method of new energy unattended field station based on AI machine vision technology is proposed. When a primary learner composed of multiple basic classifiers is used for the initial judgment of visual image categories, random forest is taken as a specific integrated learning method, and multiple decision tree classifiers are constructed to determine the category of new energy unattended station images based on the labels that appear most frequently in the output results. After selecting the partition features of the visual images of the optimal new energy unattended station based on information gain, ID3 decision tree algorithm is used to output the concrete inspection results. In the test results, mAP is always stable above 0.95. From the overall perspective, the mean value of mAP is higher than that of the control group by 0.0733 and 0.0903, respectively, with high reliability.
keywords: AI machine vision technology New energy unattended station Automatic inspection Primary learner Random forest Information gain Partition characteristics ID3 decision tree algorithm
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
曹瑞安* | 上海申能新能源投资有限公司 | bddbuwy@163.com |
Author Name | Affiliation | |
Cao Ruian | Shanghai Shenergy New Energy Investment Co., Ltd. | bddbuwy@163.com |
引用文本: