本文已被:浏览 65次 下载 15次
投稿时间:2024-06-17 修订日期:2024-11-06
投稿时间:2024-06-17 修订日期:2024-11-06
中文摘要: 本文针对传统的人体行为识别研究技术使用固定视角的动作采集数据作为研究目标存在的诸多问题,例如光照变化、复杂背景等因素严重影响视频中人体行为的识别效果,提出了基于神经网络的复杂作业人员操作特征识别方法。以配网作业人员的操作特征为研究对象,通过对原始数据的采集、预处理和模型学习,并对不同的处理路径和建模方法进行对比,解决作业人员操作特征的识别问题。并以识别速度与识别准确率为依据,对KNN、SVM两种静态识别算法进行对比,通过实验结果可知:在最优参数条件下,KNN模型与SVM模型的识别准确率相同,都达到了100%,但是在识别速度方面,KNN模型的识别耗时为0.62ms,SVM识别耗时为2.4ms,相比之下KNN算法耗时较小。因此,在各自模型的最优参数下,KNN模型的识别速度要优于SVM模型的识别速度。
Abstract:This article addresses the many problems that traditional human behavior recognition research techniques use fixed perspective action data collection as the research objective, such as lighting changes, complex backgrounds, and other factors that seriously affect the recognition effect of human behavior in videos. A neural network-based complex operator operation feature recognition method is proposed. Taking the operational characteristics of distribution network operators as the research object, the problem of identifying operational characteristics of operators is solved by collecting, preprocessing, and model learning raw data, and comparing different processing paths and modeling methods. Based on the recognition speed and accuracy, a comparison was made between the two static recognition algorithms, KNN and SVM. The experimental results showed that under the optimal parameter conditions, the recognition accuracy of the KNN model and SVM model were the same, both reaching 100%. However, in terms of recognition speed, the recognition time of the KNN model was 0.62ms, and the recognition time of SVM was 2.4ms. In comparison, the KNN algorithm took less time. Therefore, under the optimal parameters of each model, the recognition speed of the KNN model is superior to that of the SVM model.
keywords: Neural networks, complex operations in distribution networks, feature recognition, static recognition algorithms, recognition speed, accuracy
文章编号: 中图分类号: 文献标志码:
基金项目:复杂作业人身风险态势感知与立体防控技术研究(GZKJXM20222338)
作者 | 单位 | |
邱伟 | 贵州电网有限公司电力科学研究院 | 5108878@qq.com |
刘兴 | 贵州电网有限公司电力科学研究院 | |
班国邦* | 贵州电网有限公司电力科学研究院 | 7393839@qq.com |
付磊 | 贵州电网有限公司电力科学研究院 | |
周骏超 | 贵州大学 |
引用文本: