###
DOI:
电力大数据:2024,27(6):-
←前一篇   |   后一篇→
本文二维码信息
基于机器视觉技术的保护压板及指示灯状态识别算法
于洋博, 李军, 赵宝柱, 董昭阳, 杨凯峰
(内蒙古电力集团包头供电公司)
Algorithm for recognizing the status of plates and indicator lights based on machine vision technology
Yu Yangbo, Li Jun, Zhao Baozhu, Dong Zhaoyang, Yang Kaifeng
(Baotou Power Supply Company of Inner Mongolia Power Group,Baotou,Inner Mongolia,014030)
摘要
图/表
参考文献
相似文献
本文已被:浏览 32次   下载 24
投稿时间:2024-06-17    修订日期:2024-09-10
中文摘要: 保护压板投退、指示灯亮灭是二次设备运行状态的最直接反映,对其状态进行识别是二次设备智能巡检过程中的重中之重。该文基于机器视觉技术,针对保护压板、指示灯不同的特征,分别提出了对应的图像识别算法:针对保护压板,提出一种基于HOG(Histogram of oriented gradients, 方向梯度直方图)特征与SVM(Support Vector Machine, 支持向量机)分类器的识别算法,提取保护压板的HOG特征并将其输入SVM分类器,对每一个目标保护压板进行状态分类,从而得到识别结果;针对指示灯,提出一种基于改进LeNet-5网络的指示灯状态识别算法,利用计算机深度学习实现指示灯亮、灭识别。实验结果显示,上述两种算法识别准确率都能达到98%以上。
Abstract:The states (on/off) of plates and indicator lights are the most direct reflection of the operating status of secondary equipment, and the identification of them is of utmost importance during the intelligent inspection process of secondary equipment. Based on machine vision technology, this paper proposes corresponding image recognition algorithms according to different characteristics of the plates and the indicator lights. A recognition algorithm based on HOG features and SVM classifier is proposed for the plates, the HOG features of the plates are extracted and input into the SVM classifier, and then, the recognition results are obtained by classifying the status of each target plate. A state recognition algorithm for indicator lights based on an improved LeNet-5 network is proposed, which utilizes computer deep learning to achieve the recognition of the states of indicator lights. The experimental results show that the recognition accuracy of the above two algorithms can reach more than 98%.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: