本文已被:浏览 4次 下载 10次
投稿时间:2024-06-06 修订日期:2024-06-06
投稿时间:2024-06-06 修订日期:2024-06-06
中文摘要: 当前电网企业在运营中积累了大量的用户行为数据,如何有效监控和分析用户在复杂的业务系统中的操作行为对于保障电网的安全和高质量运营是至关重要的问题。本文提出了一种基于图向量计算的用户异常行为检测方法。该方法通过分析一般的业务操作手册构建常态业务流程操作流程图。针对用户时序行为数据按照时间序列构建行为链路,并将复杂的用户时序行为转为内容语义图。然后将流程图和时序图,使用图向量化技术转换为数值向量。接着使用传统支持向量机(SVM)模型,实现用户行为的图向量匹配计算,来发现用户行为内容语义图与业务流程操作流程图的异同点。最后,对不同领域的业务异常行为进行深入分析挖掘,优化检测结果,提高检测的准确性和效率。实验结果表明,该方法能有效识别和分析电网用户在不同业务领域中的异常行为,对于增强电网系统的安全性和稳定性具有重要意义。
Abstract:Currently, power grid enterprises have accumulated a large amount of user behavioral data in their operations, and how to effectively monitor and analyze the user''s operational behavior in complex business systems is a crucial issue for guaranteeing the safety and high-quality operation of power grids. In this paper, we propose a user abnormal behavior detection method based on graph vector computation. The method constructs a normal business process operation flow chart by analyzing a general business operation manual. The behavioral links are constructed according to the time sequence for the user temporal behavior data, and the complex user temporal behavior is converted into a content semantic graph. The flowchart and timing diagram are then converted to numerical vectors using graph vectorization techniques. Then, the traditional support vector machine (SVM) model is used to implement the graph vector matching computation of user behaviors to discover the similarities and differences between the content semantic graph of user behaviors and the operational flowchart of business processes. Finally, in-depth analysis and mining of business anomalous behaviors in different domains are carried out to optimize the detection results and improve the accuracy and efficiency of detection. The experimental results show that the method can effectively identify and analyze the abnormal behaviors of grid users in different business domains, which is of great significance for enhancing the security and stability of the grid system..
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
王永强* | 广东电网有限责任公司梅州供电局Meizhou Power Supply Bureau of Guangdong Power Grid Co.,Meizhou, | 271253908@qq.com |
Author Name | Affiliation | |
wangyongqiang | Meizhou Power Supply Bureau of Guangdong Power Grid Co.,Meizhou, | 271253908@qq.com |
引用文本: