###
DOI:
电力大数据:2024,27(7):-
←前一篇   |   后一篇→
本文二维码信息
基于GCN-Informer模型的电力负荷短期预测
付泉泳, 秦骁, 张导, 吴纯模, 莫婷, 胡豁然
(国网重庆市电力公司信息通信分公司)
Short Term Forecasting of Power Load Based on GCN-Informer Model
Fu Quanyong, Qin Xiao, Zhang Dao, Wu Chunmo, Mo ting, Hu Huoran
(State Grid Chongqing Information Telecommunication Company、401121)
摘要
图/表
参考文献
相似文献
本文已被:浏览 6次   下载 9
投稿时间:2024-06-05    修订日期:2024-08-29
中文摘要: 电力负荷短期预测旨在指导电力调度计划制定,实现供需动态平衡;深度学习在电力负荷短期预测中得到了广泛应用。但是,现有的短期预测模型主要利用历史负荷数据,较少考虑多个用户用电行为之间的相互影响。本文利用图卷积网络(graph convolution network, GCN)处理非欧几里得数据的高效性和Informer模型预测长时序列的准确性,提出了一种集成GCN和Informer预测模型——GCN-Informer。该模型首先基于用户群组之间的相关性构建图卷积网络,提取用户的用电模式,然后利用Informer模型提取用户的历史负荷特征,二者集成学习历史负荷序列的局部隐藏相关性和不同用户用电模式之间的全局潜在相关性,在降低处理复杂度的同时提高预测精度。利用重庆市某区的用电数据对GCN-Informer模型和6种基准模型进行了对比实验。结果表明,在RSME方面,GCN-Informer模型比Transformer模型降低了2%-10%,比LSTM模型降低了2%-8%;在回归效果方面,GCN-Informer模型的R-squared平均值为95.42%,拟合度更好。
Abstract:short term forecasting (STF) of power load aims to guide the formulation of power dispatch plans and achieve dynamic balance between supply and demand. Deep learning (DL) has been widely applied in power load forecasting. However, existing short-term forecasting models mainly rely on historical load data and rarely consider the mutual influence between multiple user electric power consumption behaviors. This paper proposes an integrated GCN-Informer prediction model, which combines the efficiency of graph convolution network (GCN) in processing non Euclidean data and the accuracy of Informer model in predicting long-term sequences. The proposed model first constructs a graph convolutional network based on the correlation between user groups, extracts the user"s electric power consumption patterns, and then uses the Informer model to extract the user"s historical load characteristics. These two features are used to learn the local hidden correlation of historical load sequences and the global potential correlation between different user’s electric power consumption patterns, reducing the processing complexity while improving prediction accuracy. An experimental comparison was conducted between the GCN-Informer model and six benchmark models using power load data from a certain district in Chongqing. The results show that in terms of RSME, the GCN-Informer model reduces by 2% -10% compared to the Transformer model and by 2% -8% compared to the LSTM model. In terms of regression performance, the average R-squared value of the GCN-Informer model is 95.42%, indicating a better fit.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: