本文已被:浏览 1023次 下载 885次
投稿时间:2018-06-20 修订日期:2018-07-04
投稿时间:2018-06-20 修订日期:2018-07-04
中文摘要: 随着变电站告警信息的规范化、大数据分析在设备监控中应用的深入,使得利用监控大数据及智能化预测分析方法解决电网连锁故障的识别问题成为可能。针对电网连锁故障识别困难的问题,本文提出了基于连锁故障状态因果链的电网故障诊断、故障演化预测及电网脆弱性评估的方法。本文首先介绍了基于有限状态机模型故障因果链的单元件诊断方法、连锁故障诊断方法,然后叙述了基于智能状态因果链构建的电网故障风险评估系统,最后以实际电网为例,验证了本文所提方法的可行性。
Abstract:Aiming at the problem that the recognition of chain fault in power grid is difficult, and with the standardization of the warning information in substation as well as the deep application of big data analysis on equipment monitoring. It is possible that we can solve the problem of chain fault by using big data of monitoring and the measure of intelligent analysis and prediction. The article has come up with the grid vulnerability prediction method of grid fault diagnosis and fault evolution based on chain fault condition causality chain. First of all, the article has introduced the diagnostic method of single element and the diagnostic method of cascading failure based on causal chain of failure of the finite state machine model. Then the article has dealt with the constitute of evaluating system of the risk of power grid failure based on the causal chain of intelligence state. At last, the article has been verified the feasibility of the method in this article with an actual power grid as an example.
keywords: Finite-state Machine fault causal chains Power grid fault diagnosis Failure risk assessment Monitoring big data
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
肖飞* | 国网上海市电力公司电力调度控制中心 | xiwu-leng@sgcc.com.cn |
冷喜武 | 国家电网有限公司 | |
叶康 | 国网上海市电力公司电力调度控制中心 | |
邓祥力 | 上海电力学院电气工程学院 | |
李雄立 | 泰豪软件股份有限公司 |
引用文本: