###
DOI:
电力大数据:2019,22(4):-
本文二维码信息
基于大数据的风电设备远程故障监测与诊断系统研究
(吉林电力股份有限公司)
Research on remote Fault Monitoring and diagnosis system#$NL of Wind Power equipment based on big data
(Jilin Electric Power CO.,LTD. Changchun 130022)
摘要
图/表
参考文献
相似文献
本文已被:浏览 576次   下载 1113
投稿时间:2018-06-12    修订日期:2018-12-07
中文摘要: 大数据、云计算等新一代信息技术的快速发展,推动风电设备状态监测技术进步。文章通过风电设备远程监测与故障诊断平台建设实践,从系统功能、平台建设、故障分析等层面,论述了如何基于大数据实现对风机故障预诊断,提升风力发电机组监控与管理水平。通过对机组运行状态的实时在线监测,利用系统内智能数据报警策略准确筛选机组异常,借助于人工智能分析诊断系统和远程专家的综合分析评价,滚动预测故障未来的发展趋势,帮助用户优化风机维护检修工作,减少停机损失,降低维护成本,提高风机利用率。在集控中心预检测平台建立大数据存储、处理、分析、诊断服务器,收集风场各项数据后与专业厂家存储的数据资源整合,建立各种类型风机故障模型,集控中心培训诊断分析师可通过对比找出故障曲线特点和规律,对实时数据经诊断分析后提出整改措施,提前预防风机故障的扩大,开发相关监视及报警系统,联合风机传统监控系统提高监控中心的设备管理能力。
中文关键词: 发电  生产管控  信息化  建设
Abstract:The rapid development of new generation information technology, such as big data and cloud computing, promotes the progress of wind power equipment condition monitoring technology. Through the construction practice of remote monitoring and fault diagnosis platform for wind power equipment, this paper discusses how to realize the fault pre-diagnosis of wind turbine based on large data from the aspects of system function, platform construction and fault analysis, so as to improve the monitoring and management level of wind turbine. Through real-time on-line monitoring of unit operation status, using intelligent data alarm strategy in the system to accurately screen unit abnormalities, and by means of comprehensive analysis and evaluation of artificial intelligence analysis and diagnosis system and remote experts, rolling prediction of future development trend of fault can help users optimize fan maintenance and repair work and reduce downtime loss. Loss, reduce maintenance costs, improve fan utilization. The large data storage, processing, analysis and diagnosis servers are established in the pre-detection platform of the centralized control center. After collecting all data of the wind farm, the data resources stored by the professional manufacturers are integrated, and various types of fan fault models are established. The centralized control center trains diagnostic analysts to find out the characteristics and rules of the fault curve through comparison, and to real-time numbers. According to the diagnosis and analysis, the improvement measures are put forward to prevent the expansion of fan failure in advance, develop relevant monitoring and alarm systems, and combine the traditional fan monitoring system to improve the equipment management ability of the monitoring center.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: