###
DOI:
电力大数据:2018,21(5):-
←前一篇   |   后一篇→
本文二维码信息
大数据技术在电力通信网的研究与应用
林炳花
(国网福建省电力有限公司三明供电公司)
Research And Application Of Big Data TechnologyIn Electric Power Communication Network
Lin Binghua
(State Grid SanMing Electric Power Supply Branch,FuJian SanMing,365000)
摘要
图/表
参考文献
相似文献
本文已被:浏览 331次   下载 519
投稿时间:2018-04-17    修订日期:2018-05-08
中文摘要: 本文首先简要介绍了大数据的5V特征、电力大数据3E特征及电力通信网的覆盖范围,接着重点研究了大数据技术在电力通信网的应用实践——通信管理系统。详细分析了通信管理系统的总体目标、管理范围、应用模式、功能系统范围。通信管理系统具备实时监视、资源管理、运行管理、专业管理四大业务应用,覆盖各级电力通信骨干网和终端通信接入网。通过系统互联,完成通信管理系统上下级之间、与其他系统横向之间的信息共享和应用协同,全面提升通信全程全网故障定位处理能力、跨专业和跨网络的资源管理和优化配置能力、通信业务的全流程闭环管理能力。形成具有集约化、标准化、智能化特征的国家电网公司企业级通信管理平台,为提升通信网络运行维护能力和管理水平提供技术支撑。
Abstract:The 5V feature of big data,3E feature of big data of power and the coverage of power communication network are first briefly introduced in this paper, then the application practice of big data technology in power communication network--communication management system is studied emphatically. The overall goal, management scope, application model, functional system of the communication management system are detailed analyzed. There are four major business applications in the communication management system: real-time monitoring, resource management, operation management, and professional management, covering all levels of power communication backbone network and terminal communication access network. Through system interconnection, the information sharing and application synergy between the upper and lower levels of the communication management system and the other systems are completed. The capability of network fault location, cross-professional and cross-network resource management, optimal configuration, and closed-loop management of communication services throughout the country will be improved. An enterprise-level communications management platform with intensive, standardized and intelligent features will be formed, which will provide technical support for improving the operation and maintenance capabilities of communications network.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: