本文已被:浏览 4次 下载 0次
投稿时间:2025-04-26 修订日期:2025-06-24
投稿时间:2025-04-26 修订日期:2025-06-24
中文摘要: 为了准确并且快速地进行MMC子模块故障定位,文章提出一种基于PSO-BP的MMC子模块故障定位方法。首先开展MMC子模块开路故障特性分析,根据小波分析理论提取MMC桥臂各个子模块电容电压小波包节点能量,然后将归一化后的子模块电容电压小波包节点能量输入到BP神经网络进行训练,通过对桥臂子模块进行编码,把子模块故障定位问题转化为分类识别问题,将BP神经网络的期望输出与实际输出进行对比可以定位出故障子模块,并利用粒子群算法优化BP神经网络的初始权值和阈值,使故障定位更加快速和准确。最后基于MATLAB/simulink仿真平台进行验证,仿真结果表明,该方法能够快速并且准确地定位出MMC桥臂中发生故障的子模块。
Abstract:In order to locate the fault of MMC sub module accurately and quickly, this paper proposes a fault location method of MMC sub module based on PSO-BP. Firstly, the characteristics of MMC sub module open circuit fault are analyzed. According to the wavelet analysis theory, the wavelet packet node energy of capacitor voltage of each sub module of MMC bridge arm is extracted. Then the normalized wavelet packet node energy of capacitor voltage of each sub module is input into BP neural network for training. By coding the sub module of bridge arm, the problem of fault location of sub module is transformed into a problem of classification and recognition, By comparing the expected output of BP neural network with the actual output, the fault block can be located, and the initial weights and thresholds of BP neural network are optimized by particle swarm optimization algorithm, so that the fault location is faster and more accurate. Finally, the simulation results based on MATLAB / Simulink show that the method can quickly and accurately locate the faulty sub module in MMC bridge arm.
keywords: MMC sub module Fault location BP neural network PSO
文章编号:20250426001 中图分类号: 文献标志码:
基金项目:湖南省自然科学基金面上项目( 2021JJ30725)
Author Name | Affiliation | Postcode |
Feng Yibo | Changsha University of Science and Technology | 541100 |
Yang Xin | Changsha University of Science and Technology |
引用文本: