本文已被:浏览 3次 下载 0次
投稿时间:2025-04-24 修订日期:2025-05-12
投稿时间:2025-04-24 修订日期:2025-05-12
中文摘要: 本文提出一种基于灰狼捕食(GWO)优化变分模态分解(VMD)与SOM神经网络算法结合的变压器振动信号特征量提取方法。首先利用灰狼捕食算法搜索VMD的最佳影响参数组合,据搜寻结果设置VMD算法的惩罚因子与分量个数,并用于分解变压器振动信号,筛选最佳分量,并进一步提取其时域、频域中6个具有代表性的特征量,共提取120组。运用SOM神经网络对特征量进行分类识别。应用该方法对实验变压器空载、短路、负载正常、负载故障四种状态下的振动信号进行分析,结果表明优化后VMD可避免过度分解并正确提取最佳分量,状态识别准确率高达99.37%。最后将该方法运用到在运变压器的故障诊断中,结果显示该方法可实现在运变压器故障的有效识别。
Abstract:This paper proposes a transformer vibration signal feature extraction method based on Grey Wolf Prey (GWO) optimized Variational Mode Decomposition (VMD) and SOM neural network algorithm.Firstly, the grey wolf predation algorithm is used to search for the optimal combination of influencing parameters for VMD. Based on the search results, the penalty factor and number of components of the VMD algorithm are set, and used to decompose the transformer vibration signal, screen for the best components, and further extract six representative feature quantities in the time and frequency domains, for a total of 120 sets.Using SOM neural network for feature classification and recognition.The method was applied to analyze the vibration signals of experimental transformers under four states: no-load, short circuit, normal load, and load fault. The results showed that the optimized VMD can avoid excessive decomposition and correctly extract the best components, with a state recognition accuracy of up to 99.37%. Finally, the method was applied to the fault diagnosis of in-service transformers, and the results showed that the method can effectively identify faults in in-service transformers.
keywords: Transformer vibration Variational mode decomposition Grey wolf predation algorithm SOM neural network state recognitio
文章编号:20250424001 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | 邮编 |
徐舒蓉* | 贵州电网有限责任公司电力科学研究院 | 550002 |
Author Name | Affiliation | Postcode |
Xushurong | Science Institute of Power System of Guizhou Power Grid Co. Ltd., Guiyang | 550002 |
引用文本: