###
DOI:
本文二维码信息
基于二阶段渐进式内点更新策略和多特征融合的电力杆塔点云自动配准方法
李福权1, 符国晖1, 弓国军1, 林泽佳2, 陈子龙2, 张先勇2
(1.深圳供电局有限公司;2.广东技术师范大学自动化学院)
Automatic Registration Method of Pylon Point Cloud Based on Two-Stage Progressive Inlier Update Strategy and Multivariable Feature Fusion
LI Fuquan1, FU Guohui1, GONG Guojun1, LIN Zejia2, CHEN Zilong2, ZHANG Xianyong2
(1.Shenzhen power supply Co,Ltd;2.School of automation,Guangdong Polytechnic normal university)
摘要
相似文献
本文已被:浏览 4次   下载 0
投稿时间:2025-04-09    修订日期:2025-05-29
中文摘要: 建筑信息模型(Building Information Modeling, BIM)与三维激光点云模型被广泛应用于电力设施巡检维护,然而,BIM模型转换生成的采样点云与激光扫描实测点云之间存在参考坐标系不一致的问题。为此,该文提出了一种基于二阶段渐进式内点更新策略和多特征融合的自动配准方法。首先,该方法使用采样工具将电力杆塔BIM模型转换为采样点云,并对采样点云与扫描点云进行降采样;接着,通过K维树建立点云数据结构,提取FPFH特征;然后,利用基于二阶段渐进式内点更新策略的随机采样一致算法得到初始变换矩阵;最终,采用基于曲率和法线多特征融合的迭代最近点算法实现精配准。实验结果表明,相较于传统算法,该方法将电力杆塔点云数据的配准精度提升了6.91%,同时计算效率提升了8.0%,验证了该方法的有效性与实用性。
Abstract:Building Information Modeling (BIM) and 3D laser point cloud models are widely used in power facility inspection and maintenance. However, the sampled point clouds converted from BIM models and the laser-scanned point clouds often suffer from inconsistent reference coordinate systems. To address this issue, this paper proposes an automatic registration method based on a two-stage progressive inlier update strategy and multi-feature fusion. First, the method converts the BIM model of a pylon into sampled point clouds using a sampling tool and down samples both the sampled and scanned point clouds. Next, a KD-tree-based data structure is established to accelerate neighborhood searches for point cloud normal estimation, followed by extracting Fast Point Feature Histogram (FPFH) features. Then, an initial transformation matrix is obtained using the Random Sample Consensus (RANSAC) algorithm with the two-stage progressive inlier update strategy. Finally, precise registration is achieved through an Iterative Closest Point (ICP) algorithm incorporating multi-feature fusion based on curvature and normal vectors. Experimental results demonstrate that, compared to traditional algorithms, this method improves the registration accuracy of pylon point cloud data by 6.91% while enhancing computational efficiency by 8.0%, validating its effectiveness and practicality.
文章编号:20250409001     中图分类号:    文献标志码:
基金项目:广东省普通高校重点领域专项(2024ZDZX3052); 中国南方电网科技计划项目(09000020240106030902214)
引用文本: