本文已被:浏览 11次 下载 6次
投稿时间:2025-03-31 修订日期:2025-05-21
投稿时间:2025-03-31 修订日期:2025-05-21
中文摘要: 输电线路设备检测对于电力系统的安全稳定运行至关重要。随着社会经济的发展和电力系统规模的扩大,对输电线路的安全性和可靠性提出了更高的要求。本文提出了一种基于改进YOLOv8算法结合金字塔分割注意力(Pyramid Split Attention, PSA)机制的方法,用于提高输电线路设备小目标的检测精度。通过引入PSA模块,模型在多尺度特征融合和特征增强方面得到了显著提升,从而有效提高了对小目标的感知能力。实验结果表明,在InsPLAD-det数据集上,该方法mAP50指标达到90.6%的,并且具有良好的实时检测性能。此外,消融实验验证了PSA模块的有效性及其在不同规模模型中的适应性。
Abstract:The detection of transmission line equipment is of great significance for the safe and stable operation of the power system. With the development of social economy and the expansion of the scale of the power system, higher requirements are put forward for the safety and reliability of transmission lines. This paper proposes a method based on the improved YOLOv8 algorithm combined with the Pyramid Split Attention (PSA) mechanism to improve the detection accuracy of small targets of transmission line equipment. By introducing the PSA module, the model has been significantly improved in terms of multi-scale feature fusion and feature enhancement, thus effectively improving the perception ability of small targets. Experimental results show that on the InsPLAD-det dataset, this method achieves a mean Average Precision (mAP50) of 90.6% and has good real-time detection performance. In addition, ablation experiments verify the effectiveness of the PSA module and its adaptability in models of different scales.
keywords: Detection of Transmission Line Equipment,Small Target Detection,Deep Learning,Attention Mechanism,Multi-scale Feature Fusion
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学基金(42375008)
作者 | 单位 | |
吕越* | 山东鲁软数字科技有限公司 | ls_lyuy@163.com |
Author Name | Affiliation | |
lyu yue | Shandong Luruan Digital Technology Co., Ltd. | ls_lyuy@163.com |
引用文本: