本文已被:浏览 19次 下载 11次
投稿时间:2025-03-27 修订日期:2025-04-22
投稿时间:2025-03-27 修订日期:2025-04-22
中文摘要: 为解决配电网在高采样率环境下在线检测面临的计算效率低、存储管理不足及时间同步误差较大的问题,提出同步高采样检测系统。系统采用多线程并行解析、帧索引优化及流式计算提高数据解析效率,使吞吐量提升近4倍,解析延迟降低85%;通过批量写入、索引优化及冷热分层存储策略,提升数据存储与查询性能,吞吐量提高12倍,查询延迟减少87%;结合窗口对齐和插值修正,将时间同步误差控制在950μs以内,增强多PMU数据的对齐一致性;引入滑动窗口特征提取、LSTM时序预测及密度聚类,使异常检测准确率提升10%-20%。实验结果表明,系统可在高采样率环境下稳定运行,有效支持配电网的在线检测及智能监测。
Abstract:To address the challenges of low computational efficiency, insufficient storage management, and large time synchronization errors in high-sampling-rate distribution network online detection, a Synchronized High-Sampling Detection System is proposed. The system employs multi-threaded parallel parsing, indexed frame optimization, and streaming computation to enhance data parsing efficiency, increasing throughput by nearly four times while reducing parsing delay by 85%. By utilizing batch writing, indexed storage, and hot-cold tiered data management strategies, storage and query performance are significantly improved, achieving 12× higher throughput and 87% lower query latency. A window-based alignment and interpolation correction method reduces time synchronization errors to within 950μs, ensuring enhanced alignment consistency of multi-PMU data. Additionally, sliding window feature extraction, LSTM time-series prediction, and density-based clustering are integrated to improve anomaly detection accuracy by 10%-20%. Experimental results demonstrate that the system operates stably under high-sampling-rate conditions, effectively supporting online detection and intelligent monitoring of distribution networks..
keywords: Detection System Distribution network Online detection High sampling rate Intelligent anomaly detection
文章编号: 中图分类号: 文献标志码:
基金项目:南方电网科技项目(GZKJXM20232530)
作者 | 单位 | |
王荣* | 贵州电网有限责任公司兴义供电局 | gzdygdj@163.com |
石海英 | 贵州电网有限责任公司兴义供电局 | |
景诗毅 | 贵州电网有限责任公司兴义供电局 | |
练寅 | 贵州电网有限责任公司兴义供电局 |
引用文本: