###
DOI:
电力大数据:2025,28(3):-
←前一篇   |   后一篇→
本文二维码信息
基于改进随机森林算法的线损率预测研究
张一彦, 陆嘉铭, 贺静, 朱洪志, 高翔, 李丹戎, 陆倚鹏
(国网上海嘉定供电公司)
Research on Line Loss Rate Prediction Based on Improved Random Forest Algorithm
ZHANG Yiyan, LU Jiaming, HE Jing, ZHU Hongzhi, GAO Xiang, LI Danrong, LU Yipeng
(State Grid Shanghai Jiading Power Supply Company)
摘要
图/表
参考文献
相似文献
本文已被:浏览 11次   下载 6
投稿时间:2025-03-23    修订日期:2025-04-02
中文摘要: 针对新型电力系统中线损率波动特征复杂、传统随机森林算法在弱相关性与低自回归特性数据中预测精度不足的问题,本研究提出一种基于残差驱动与梯度提升的改进随机森林算法。通过引入残差阈值触发机制和动态权重分配函数,构建基模型偏差实时检测与梯度提升补偿的协同优化框架,并结合跨周期采样与突变事件标记的数据重构策略,有效捕捉线损率非线性变化规律。实验结果表明,改进算法的预测精度显著提升,其决定系数(R2)较传统模型明显提升,平均绝对误差(MAE)显著下降,异常工况识别准确率大幅提高。该方法突破了传统模型对线性关联与时间序列依赖的局限性,为电力系统线损异常定位和降损策略制定提供了智能化分析工具,同时为多源弱相关能源数据的预测建模提供了可迁移的技术路径,具有显著的工程应用价值。
Abstract:Aiming at the complex fluctuation characteristics of line loss rate in new power systems and the insufficient prediction accuracy of traditional random forest algorithms in handling weakly correlated and low-autoregressive data, this study proposes an improved random forest algorithm based on residual-driven and gradient boosting mechanisms. By introducing a residual threshold triggering mechanism and a dynamic weight allocation function, a collaborative optimization framework is constructed for real-time detection of base model deviations and gradient boosting compensation. Combined with data reconstruction strategies including cross-cycle sampling and mutation event labeling, the algorithm effectively captures nonlinear variation patterns of line loss rate. Experimental results demonstrate significant improvements in prediction accuracy: the coefficient of determination (R2) shows notable enhancement compared to traditional models, the mean absolute error (MAE) decreases substantially, and the recognition accuracy of abnormal operational scenarios improves markedly. This method overcomes the limitations of traditional models that rely on linear correlations and time-series dependencies, providing an intelligent analytical tool for line loss anomaly localization and loss-reduction strategy formulation in power systems. Furthermore, it offers a transferable technical pathway for predictive modeling of multi-source weakly correlated energy data, demonstrating substantial engineering application value.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: