本文已被:浏览 8次 下载 0次
投稿时间:2025-03-12 修订日期:2025-04-28
投稿时间:2025-03-12 修订日期:2025-04-28
中文摘要: 随着物联网技术呈现出快速发展的态势,以及对小型且高效设备的新兴需求不断涌现,物联网设备受到广泛关注。这些设备在实际应用中的集成日益广泛,这在提升其吸引力的同时,也引发了一系列重大的安全隐患。尽管物联网设备具有易于部署且以及成本效益高的特点,然而其安全措施却未能与使用范围的扩展相匹配。在当前网络攻击日益复杂的时代背景下,增强物联网设备的安全性已然成为阻止黑客恶意行为以及确保成本节约的当务之急。该文提出了一种新颖的跨架构动态物联网恶意软件检测方法,该方法借助物联网软件的动态行为(例如系统调用等),基于多层感知机与软件动态特征构建模型,实现针对恶意IoT软件攻击的精准防御。通过对所提出模型进行全面评估,在检测未知物联网可执行链接格式(ELF)文件时,平均准确率达到99.44%。相较于其他物联网恶意软件检测方法,该方法易于部署,且能够实现较高的检测率,使其非常适合防御恶意物联网软件,进而保护物联网生态系统的完整性与安全性。
中文关键词: 网络安全、智能物联网、恶意软件检测、人工智能
Abstract:With the rapid development of the Internet of Things technology and the emerging need for small and efficient equipment, IoT devices are attracting huge attention. The increasing integration of IoT devices into practical applications has not only heightened their appeal but also raised significant concerns. Despite their ease of deployment and cost-effectiveness, the security measures of these devices have not kept pace with their expanding use. In an era where cyber-attacks are becoming increasingly sophisticated, enhancing the security of IoT devices is imperative to thwart malicious efforts by hackers and to ensure cost savings. In this paper, we present a novel dynamical cross-architecture IoT malware detection model that utilizes IoT software's dynamical behaviors such as system calls to achieve a highly accurate detection rate. A comprehensive evaluation is performed for the proposed model which finally achieved a high score of 99.44\% average accuracy detecting unknown IoT Executable and Linkable Format (ELF). Compared with other methods for IoT malware detection, our method is easy to deploy and able to achieve a high rate of detection, which makes it suitable for defending malicious IoT software and protecting the integrity and security of IoT ecosystems.
文章编号:20250312001 中图分类号: 文献标志码:
基金项目:浙江省 “尖兵”“领雁”研发攻关计划(2022C01239)
作者 | 单位 | 邮编 |
陈荣君 | 浙江华云信息科技有限公司 | 310000 |
王尚俊 | 浙江华云信息科技有限公司 | |
吴霞 | 浙江华云信息科技有限公司 | |
伍佰军 | 浙江华云信息科技有限公司 | |
曲庆宇* | 浙江大学 浙江 杭州 | 310058 |
阮伟 | 浙江大学 浙江 杭州 |
引用文本: