###
DOI:
电力大数据:2025,28(3):-
←前一篇   |   后一篇→
本文二维码信息
基于SGMD-WVD联合KD的风电场集电线故障区段定位算法
刘富州1, 周路遥1, 魏钰洁2, 刘童童3
(1.国网江苏省电力有限公司盐城供电公司;2.南京工程学院国际教育学院;3.国网浙江省电力有限公司嘉善县供电公司)
Fault localization algorithm for wind farm collection lines based on SGMD-WWD combined with KD
liufuzhou1, zhouluyao1, weiyujie2, liutongtong3
(1.State Grid Jiangsu Electric Power Co., Ltd. Yancheng Power Supply Company;2.Nanjing Institute of Engineering, School of International Education;3.State Grid Zhejiang Electric Power Co., Ltd. Jiashan County Power Supply Company)
摘要
图/表
参考文献
相似文献
本文已被:浏览 11次   下载 7
投稿时间:2025-03-10    修订日期:2025-04-14
中文摘要: 为解决风电场集电线短路故障后定位困难问题,本文提出基于辛几何模态分解-魏格纳-威利分布(Spectral-Grouping-based Mode Decomposition-Wigner-Ville Distribution, SGMD-WVD)时频谱联合知识蒸馏(Knowledge Distillation, KD)的故障区段定位新方法。经仿真结合理论分析发现,SGMD-WVD时频谱与故障区段有着对应关系,借助深度学习算法挖掘谱线与故障区段的关系可实现集电线故障区段定位,利用KD算法可得到高识别率且易被部署至边缘设备的网络,有助于推动深度学习故障诊断网络部署到现场。仿真显示,文中方法对集电线这种多分支混合短线网络有着良好的适应能力,定位受到过渡电阻、噪音和故障相位角影响较小。
中文关键词: SGMD-WVD  KD  风电场集电线  故障区段定位
Abstract:In order to solve the problem of difficult positioning after a short-circuit fault in a wind farm collector line, a new fault section positioning method based on Spectral-Grouping-based Mode Decomposition- Wigner-Ville Distribution (SGMD-WVD) time-frequency spectrum combined with knowledge distillation (KD) is proposed. Simulation analysis shows that the SGMD-WVD time-frequency spectrum has a corresponding relationship with the fault section. The fault section of the collector line can be located by mining the relationship between the spectrum line and the fault section with the help of a deep learning algorithm. The KD algorithm can be used to obtain a network with a high recognition rate and is easy to deploy to edge devices, which helps to promote the deployment of deep learning fault diagnosis networks to the field. Simulations show that the method proposed in this paper has good adaptability to multi-branch, mixed short-line networks such as collector lines, and the positioning is less affected by transition resistance, noise and fault phase angle.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: