本文已被:浏览 15次 下载 4次
投稿时间:2025-02-17 修订日期:2025-02-21
投稿时间:2025-02-17 修订日期:2025-02-21
中文摘要: 随着新能源的大规模并网,电力系统中同步发电机的比重正在减少,导致系统惯量降低、时变性增强。因此,迫切需要一种快速且精确的系统惯量评估方法。通常,电力系统惯量可通过同步发电机等值模型法进行粗略估计,但该方法对负荷模型影响考虑不足,误差较大。除此以外,现有的惯量估计方法大多依赖于扰动后的系统量测数据,在运行方式日趋多变的背景下,难以反映当前系统惯量的真实情况。因此,提出一种基于极限学习机(extreme learning machine, ELM)的系统惯量快速估计方法,该方法在构建系统等值负荷模型的基础上,利用极限学习机算法评估系统负荷对系统惯量的影响,以此提升仅考虑同步发电机影响的系统惯量估计精度,并实现系统惯量的快速估计。基于此,采用多个标准系统对所提方法进行测试,结果表明该方法均能够快速、准确地估计出系统的实际惯量。
Abstract:With the large-scale grid integration of new energy sources, the proportion of synchronous generators in the power system is decreasing, resulting in lower system inertia and higher time variability. Therefore, there is an urgent need for a fast and accurate system inertia assessment method. Usually, the power system inertia can be roughly estimated by the synchronous generator equivalent model method, but this method does not consider the influence of the load model enough and has a large error. Besides, most of the existing inertia estimation methods rely on the system measurement data after disturbance, which is difficult to reflect the real situation of the current system inertia in the context of the increasingly variable operation mode. Therefore, a fast estimation method of system inertia based on extreme learning machine (ELM) is proposed. On the basis of constructing the equivalent load model of the system, the method uses the ELM algorithm to evaluate the influence of system load on system inertia, so as to improve the estimation accuracy of system inertia only considering the influence of synchronous generator, and realize the fast estimation of system inertia. The fast estimation of system inertia is realized. Based on this, the proposed method is tested with several standard systems, and the results show that the method can quickly and accurately estimate the actual inertia of the system.
keywords: Inertia estimation inertial time constant frequency stabilization artificial neural networks Extreme Learning Machine
文章编号: 中图分类号: 文献标志码:
基金项目:江苏省自然科学基金青年基金
作者 | 单位 | |
柯思阳 | 南京师范大学电气与自动化工程学院 | 231802030@njnu.edu.cn |
李峰* | 南京师范大学电气与自动化工程学院 | lifeng_ee@nnu.edu.cn |
庞延震 | 南京师范大学电气与自动化工程学院 | |
钱海亚 | 南京师范大学 电气与自动化工程学院 | |
刘晓峰 | 南京师范大学电气与自动化工程学院 | |
季振亚 | 南京师范大学电气与自动化工程学院 |
引用文本: