本文已被:浏览 3次 下载 0次
投稿时间:2025-02-12 修订日期:2025-02-12
投稿时间:2025-02-12 修订日期:2025-02-12
中文摘要: 随着电力系统规模的不断扩大和复杂性的增加,传统的电力调度和故障处理模式已难以满足现代电网对可靠性和效率的要求。本文提出了一种基于人工智能的智能调度与故障预测系统,详细阐述了系统的架构设计、关键技术实现、故障预测模型构建以及实际应用案例。通过引入机器学习和深度学习技术,该系统能够显著提高电力调度的效率和可靠性,并通过故障预测减少停电时间和损失。本文通过实际案例验证了系统的有效性,并对未来发展方向进行了展望。
Abstract:With the continuous expansion and increasing complexity of the power system, traditional power dispatching and fault handling modes are no longer able to meet the reliability and efficiency requirements of modern power grids. This article proposes an intelligent scheduling and fault prediction system based on artificial intelligence, detailing the system''s architecture design, key technology implementation, fault prediction model construction, and practical application cases. By introducing machine learning and deep learning techniques, the system can significantly improve the efficiency and reliability of power dispatch, and reduce outage time and losses through fault prediction. This article verifies the effectiveness of the system through practical cases and looks forward to future development directions.
文章编号:20250212001 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | 邮编 |
唐华俊* | 贵州电网有限责任公司凯里供电局 | 556000 |
Author Name | Affiliation | Postcode |
tanghuajun | Kaili Power Supply Bureau of Guizhou Power Grid Co., Ltd. | 556000 |
引用文本: