本文已被:浏览 25次 下载 6次
投稿时间:2025-02-10 修订日期:2025-03-07
投稿时间:2025-02-10 修订日期:2025-03-07
中文摘要: 随着新能源发电技术的发展,越来越多的新能源和分布式能源接入,配电网日益复杂化、随机化,导致故障定位困难、定位不精准问题频繁出现。本文针对配电网发生故障时的特性,提出一种二进制遗传算法融合混沌粒子群算法(Genetic Algorithm-Chaotic Particle Swarm Optimization, GA-CPSO)的故障定位方法。首先,在粒子群算法中引入了自适应惯性权重和压缩因子。其次,在一维Logistic映射基础上提出了二维Logistic混沌映射,初始化粒子遍历性更强,极大的避免了陷入局部最优解的可能。然后,选取优秀粒子结合遗传算法二次寻优,提升全局寻优能力。最后,通过MATLAB仿真实验,验证了二进制GA-CPSO融合算法应用于辐射配电网故障定位的技术可行性和设计方案有效性。结果表明:该算法收敛速度较快,能够实现复杂配电网故障精确定位,且在部分故障信息突变的情况下,该方法得到的故障定位结果仍然准确。
中文关键词: 辐射配电网 故障定位 GA-CPSO融合算法 二维Logistic混沌映射
Abstract:With the development of new energy generation technology, more and more new energy and distributed energy access, the distribution network is increasingly complex and randomized, resulting in fault location difficulties and imprecise positioning problems occur frequently. In this paper, the characteristics of the distribution network when a fault occurs, a binary genetic algorithm fusion chaotic particle swarm algorithm (Genetic Algorithm-Chaotic Particle Swarm Optimization, GA-CPSO) fault location method is proposed. First, adaptive inertia weights and compression factors are introduced into the particle swarm algorithm. Secondly, a two-dimensional Logistic chaotic mapping is proposed on the basis of one-dimensional Logistic mapping, which initializes the particles with stronger traversal and greatly avoids the possibility of falling into local optimal solutions. Then, the excellent particles are selected to combine with the genetic algorithm for secondary optimization to improve the global optimization ability. Finally, the technical feasibility of the binary GA-CPSO fusion algorithm applied to radial distribution network fault localization and the effectiveness of the design scheme are verified through MATLAB simulation experiments. The results show that the algorithm converges faster, can realize the precise location of complex distribution network faults, and the fault localization results obtained by this method are still accurate under the situation of sudden change of some fault information.
keywords: distribution network fault location genetic algorithm-chaotic particle swarm optimization Two-dimensional Logistic chaos mapping
文章编号: 中图分类号: 文献标志码:
基金项目:中国南方电网有限责任公司科技项目(GZKJXM20232515)
作者 | 单位 | |
岑俊* | 兴义供电局 | 952224485@qq.com |
保宇雄 | 贵州省兴义市兴义供电局 | |
谷友方 | 贵州省兴义市兴义供电局 | |
宋宇 | 贵州省兴义市兴义供电局 | |
陶文娟 | 贵州省兴义市兴义供电局 | |
张钥郎 | 贵州电网有限责任公司电力科学研究院 | |
张松 | 贵州电网有限责任公司电力科学研究院 |
引用文本: