本文已被:浏览 2次 下载 0次
投稿时间:2025-01-10 修订日期:2025-05-30
投稿时间:2025-01-10 修订日期:2025-05-30
中文摘要: 面对电网调度过程中的高复杂度、快速响应、信号波动等问题,基于专家经验构建的调度模型难以满足实时控制需求。本文针对突发断线故障的电力系统调度场景,提出一种融合模拟运行机制的系统调度策略优化方法。在模仿学习阶段,模拟运行机制与动作空间多级缩减模型结合,压缩动作搜索空间,利用模拟专家经验数据提升基础调度策略的学习效率;在强化学习阶段,通过模拟运行机制进行断线重连动作的优先选择,提升决策准确性。此外,设计差异化奖励函数优化策略引导。断线故障仿真实验及消融实验表明,相比于DDQN算法模型和模仿学习模型,综合调度成功率分别提高了50%和100%,调度动作成本分别降低了50%和60%,电网稳定运行时间分别是上述两个模型的1.85倍和6.5倍。
Abstract:In the context of high complexity, rapid response requirements, and signal fluctuations inherent in power grid dispatching, traditional dispatching models based on expert experience often fail to meet real-time control demands. This paper proposes a system dispatch optimization method that integrates a simulation operation mechanism, specifically designed for power system dispatch scenarios involving sudden disconnection faults. During the imitation learning phase, the simulation operation mechanism is combined with a multi-level action space reduction model to compress the action search space, thereby enhancing the learning efficiency of the baseline dispatching strategy using simulated expert experience data. In the reinforcement learning phase, the simulation mechanism is further employed to prioritize disconnection and reconnection actions, improving decision-making accuracy. Additionally, a differentiated reward function is designed to refine policy optimization. Simulation experiments involving disconnection faults and ablation studies demonstrate that, compared to the DDQN algorithm and the imitation learning model, the proposed method increases the comprehensive dispatch success rate by 50% and 100%, respectively, reduces dispatch action costs by 50% and 60%, respectively, and extends the stable operation time of the power grid by factors of 1.85 and 6.5, respectively.
keywords: simulation of operational mechanisms disconnection faults scheduling optimization imitation learning reinforcement learning
文章编号:20250110001 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | 邮编 |
施春华 | 电力规划设计总院 | 100032 |
董卓飞 | 中国石油大学(北京)人工智能学院 | |
范泽远 | 中国石油大学(北京)中国石油大学(北京)人工智能学院 | |
卢鑫 | 中国石油大学(北京)中国石油大学(北京)人工智能学院 | |
朱丹丹* | 中国石油大学(北京)中国石油大学(北京)人工智能学院 | 102249 |
引用文本: