本文已被:浏览 16次 下载 4次
投稿时间:2024-12-03 修订日期:2025-02-10
投稿时间:2024-12-03 修订日期:2025-02-10
中文摘要: 针对高维度时序数据分类面临的挑战,如数据噪声大、维度冗余及长距离依赖关系难以捕捉等问题,本文提出了一种基于Transformer架构的新型分类方法。本研究首先通过移动平均滤波和标准化处理降低数据噪声并统一特征尺度;接着采用主成分分析(PCA)等技术进行数据分割和维度压缩,以提高模型的计算效率。在此基础上,利用Transformer模型的自注意力机制,有效地捕捉时间序列中的长期依赖性,增强了模型对复杂模式的理解能力。实验结果显示,所提方法在基准数据集上取得了优异的分类效果,相较于传统方法,不仅分类精度有所提升,而且模型训练速度也得到了显著加快。本研究为高维度时序数据的有效分类提供了一种高效、可靠的解决方案。
中文关键词: 高维度时序数据1 Transformer模型2 维度压缩3 主成分分析4 时间序列分类5
Abstract:To address the challenges faced in the classification of high-dimensional time series data, such as significant noise, dimensional redundancy, and difficulty in capturing long-range dependencies, this paper proposes a novel classification method based on the Transformer architecture. The study first reduces data noise and unifies feature scales through moving average filtering and normalization. It then employs techniques such as Principal Component Analysis (PCA) for data segmentation and dimensionality reduction to enhance computational efficiency. Building on this foundation, the self-attention mechanism of the Transformer model is utilized to effectively capture long-term dependencies within time series, thereby strengthening the model''s ability to understand complex patterns. Experimental results show that the proposed method achieves excellent classification performance on benchmark datasets. Compared to traditional methods, the proposed approach not only improves classification accuracy but also significantly accelerates model training speed. This research provides an efficient and reliable solution for the effective classification of high-dimensional time series data.
keywords: High-Dimensional Time Series Data1 Transformer Model2 Dimensionality Reduction3 Principal Component Analysis (PCA)4 Time Series Classification5
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
许阳* | 国网陕西省电力有限公司西安供电公司 | 2869983857@qq.com |
Author Name | Affiliation | |
Xu Yang | 国网陕西省电力有限公司西安供电公司 | 2869983857@qq.com |
引用文本: