###
DOI:
电力大数据:2024,27(12):-
←前一篇   |   后一篇→
本文二维码信息
分布式光伏发电集群累加法功率预测研究
文贤馗
(贵州电网有限责任公司电力科学研究院)
Research on Power Prediction of Distributed Photovoltaic Power Clusters by Cumulative Method
wen xiankui
(Electric Power Research Institute of Guizhou Power Grid Co., Ltd.,)
摘要
图/表
参考文献
相似文献
本文已被:浏览 67次   下载 24
投稿时间:2024-11-18    修订日期:2024-12-27
中文摘要: 针对分布式光伏发电功率预测中存在的数据缺失问题,研究提出了一种创新的集群累加法。首先通过K均值聚类算法,根据光伏发电客户的正向功率和反向功率对分布式光伏电站进行集群划分,形成具有相似发电特性的多个子集群。然后,针对每个子集群,采用长短期记忆(LSTM)神经网络模型预测未来特定时间段内的平均功率。通过将各子集群的预测功率值累加,最终获得整个光伏电站集群的总预测功率。实验结果表明,集群累加法不仅有效解决了分布式光伏预测中的效率和精确度问题,而且在平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)等方面表现优异,决定系数(R2)接近1,显示出模型强大的拟合能力和泛化性能。此研究为提高分布式光伏系统的管理效率提供了新的技术途径。
Abstract:Aiming at the problem of missing data in distributed PV power prediction, the study proposes an innovative cluster accumulation method. Firstly, through the K-mean clustering algorithm, based on the forward power and reverse power of PV power generation customers, distributed PV power plants are categorized into different clusters, forming multiple sub-clusters with similar power generation characteristics. Then, for each sub-cluster, a Long Short-Term Memory (LSTM) neural network model is used to predict the average power over a specific time period in the future. By accumulating the predicted power values of each sub-cluster, the total predicted power of the whole PV plant cluster is finally obtained. The experimental result shows that the cluster accumulation method not only effectively solves the efficiency and accuracy problems in distributed PV prediction, but also performs well in terms of mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). At the same time, it has a coefficient of determination (R2) close to 1, showing the strong fitting ability and generalization performance of the model. This research provides a new technical approach to improve the management efficiency of distributed PV systems.
文章编号:     中图分类号:    文献标志码:
基金项目:贵州省科技创新人才团队(黔科合平台人才-CXTD[2022]008);南方电网科技项目(GZKJXM20222258)
引用文本: