###
DOI:
电力大数据:2025,28(01):-
←前一篇   |   后一篇→
本文二维码信息
基于回归预测的母线电量不平衡率分析方法
沈天时, 王俊翔, 时宇飞
(国网上海市电力公司市北供电公司)
Analysis of Electricity Unbalance Rate of Busbar Based on Regression Forecasting
shentianshi, Junxiang Wang, Yufei Shi
(Shibei Electric Power Supply Company, State Grid Shanghai Power Company)
摘要
图/表
参考文献
相似文献
本文已被:浏览 27次   下载 18
投稿时间:2024-11-10    修订日期:2025-01-20
中文摘要: 母线电量不平衡率是评估供电企业运营水平的关键指标。随着变电站的改造和升级,当母线不平衡率出现异常时,仅依赖现场调试和SCADA数据比对等传统方法进行排查,效率往往低下,且容易无功而返。为解决这一难题,该文提出了一种集成负荷预测与电能采集系统的在线分析方法,运用回归算法来预测电量变化趋势,并通过将预测值与采样值进行对比,实现数据异常监测,从而提高故障排除的效率和准确性。此外,该文还设计了一套包含母线-线路拓扑判定、故障定位、故障定型的母线不平衡率异常分析流程。最终,通过算例分析验证了该平台方案的有效性。
Abstract:Electricity unbalance rate of busbar is the key indicators for measuring operating level of power supply enterprises. With the reforming and upgrading of substations, the abnormality of electricity unbalance rate of busbar can not be judged high efficiently and successfully only by traditional methods such as on-site inspection or SCADA data comparison. In order to solve this problem, this paper proposes an online analysis method based on load forecasting and energy collection system, predicting the change trend of electricity quantity through regression algorithm, monitoring data abnormality by comparing load forecasting value and sampling ones, promoting fault elimination efficiency and accuracy, also devising steps of abnormality analysis of electricity unbalance rate of busbar including topology identification, fault location fixing, fault type determination according to the method. the method is also proved to be effective by a calculation example.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: