###
DOI:
电力大数据:2025,28(02):-
←前一篇   |   后一篇→
本文二维码信息
基于时间序列预测算法的变压器套管油中溶解气体预测研究
蒲曾鑫1, 李波1, 白洁1, 杨昊2, 黄宇1, 牧灏1, 吕黔苏1
(1.贵州电网有限责任公司电力科学研究院;2.西安工程大学电子信息学院)
Prediction of Dissolved Gas in Transformer Bushing Oil Based on Time Series Prediction Algorithm
pu zengxin1, li bo1, bai jie1, Yang Hao2, Huang Yu1, Mu Hao1, Lv Qiansu1
(1.Electric Power Research Institute of Guizhou Power Grid Co., Ltd.;2.School of Electronics and Information of Xi’an Polytechnic University)
摘要
图/表
参考文献
相似文献
本文已被:浏览 19次   下载 4
投稿时间:2024-11-03    修订日期:2025-01-21
中文摘要: 变压器套管作为电力系统中不可或缺的组成部分,其油纸绝缘结构容易受到多种因素的影响,从而产生潜在缺陷。本研究旨在预估变压器套管内油中溶解气体的组分含量,进而评估变压器套管的绝缘状态。为此,综合选用了自回归积分滑动平均(ARIMA)模型、长短时记忆(LSTM)神经网络以及灰色预测(DGGM)模型,对变压器套管绝缘油在未来时间点的溶解气体进行了预测。通过对比这些模型的性能,发现优化后的ARIMA模型在预测气体含量和评估绝缘状态方面表现最佳,而DGGM模型预测CO2的平均绝对误差(MAE)约为优化后ARIMA模型的2.5倍。本项研究成果能够为保障电力系统的安全且稳定运行提供关键的技术支撑
Abstract:Transformer bushings, as an indispensable part of the power system, are prone to potential defects in their oil-paper insulation structure due to various factors. This study aims to predict the content of dissolved gases in transformer bushings oil and evaluate their insulation status. To this end, we used the autoregressive integrated moving average (ARIMA) model, the long short-term memory (LSTM) neural network, and the grey prediction (DGGM) model to predict the dissolved gas content of transformer bushings oil in the future time points. By comparing the performance of these models, we found that the optimized ARIMA model performed best in predicting gas content and evaluating insulation status, while the DGGM model''s average absolute error (MAE) in predicting CO2 was about 2.5 times that of the optimized ARIMA model. This research result can provide important technical support for the safe and stable operation of the power system.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: