本文已被:浏览 6次 下载 0次
投稿时间:2024-10-30 修订日期:2024-11-01
投稿时间:2024-10-30 修订日期:2024-11-01
中文摘要: 本文研究了基于三维点云数据的预处理技术,并提出了一种改进的自适应滤波算法,旨在提高复杂场景下点云数据的质量和处理效率。三维点云数据作为描述物体表面形状和空间位置的重要工具,广泛应用于自动驾驶、机器人视觉、三维建模等领域。然而,点云数据在采集过程中往往受到噪声、异常点的影响,这对后续处理和分析带来挑战。本文首先分析了三维点云数据的生成方法与基本特征,探讨了激光雷达(LiDAR)、立体视觉系统及RGB-D摄像头等多种数据采集手段的特点。然后,详细介绍了现有的点云滤波与去噪技术,最后通过实验对均值滤波、中值滤波、统计滤波和体素滤波等常见方法进行了比较分析。为了克服传统滤波方法在处理复杂噪声条件下的局限性,本文提出了一种改进的自适应滤波算法,通过局部噪声水平估计、滤波参数动态调整和边缘检测与保留,显著提高了滤波效果和计算效率。根据研究结果表明,所提出的自适应滤波算法在去除噪声的同时,能够有效保留点云数据的边缘细节,并且在多种实验场景中展现了优异的性能。实验数据的对比分析显示,该算法在点云预处理中具有较高的实用性,为三维点云数据的进一步处理与应用奠定了基础。
Abstract:This paper studies the preprocessing techniques for three-dimensional point cloud data and proposes an improved adaptive filtering algorithm aimed at enhancing the quality and processing efficiency of point cloud data in complex scenes. Three-dimensional point cloud data, as an important tool for describing the surface shape and spatial position of objects, is widely used in fields such as autonomous driving, robotic vision, and 3D modeling. However, point cloud data often suffer from noise and outliers during the collection process, which poses challenges for subsequent processing and analysis. This paper first analyzes the generation methods and basic characteristics of three-dimensional point cloud data, exploring the features of various data acquisition methods such as LiDAR (Laser Imaging Detection and Ranging), stereo vision systems, and RGB-D cameras. It then provides a detailed introduction to existing point cloud filtering and denoising techniques. Finally, the paper compares and analyzes common methods such as mean filtering, median filtering, statistical filtering, and voxel filtering through experiments. To overcome the limitations of traditional filtering methods under complex noise conditions, this paper proposes an improved adaptive filtering algorithm that significantly enhances filtering effectiveness and computational efficiency through local noise level estimation, dynamic adjustment of filtering parameters, and edge detection and preservation. The research results indicate that the proposed adaptive filtering algorithm effectively removes noise while preserving the edge details of point cloud data and demonstrates excellent performance in various experimental scenarios. Comparative analysis of experimental data shows that this algorithm has high practical utility in point cloud preprocessing, laying a foundation for further processing and application of three-dimensional point cloud data.
keywords: 3D point cloud data preprocessing filtering denoising
文章编号:20241030001 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | 邮编 |
王冕 | 1. 贵州电网有限责任公司 | 550002 |
颜康* | 1. 贵州电网有限责任公司 | 550002 |
罗鑫 | 1. 贵州电网有限责任公司 | |
袁娴枚 | 1. 贵州电网有限责任公司 | |
吴建蓉 | 1. 贵州电网有限责任公司 | |
范强 | 1. 贵州电网有限责任公司 | |
胡天嵩 | 1. 贵州电网有限责任公司 |
引用文本: