本文已被:浏览 2次 下载 0次
投稿时间:2024-10-11 修订日期:2024-10-25
投稿时间:2024-10-11 修订日期:2024-10-25
中文摘要: 非侵入式负荷监测(non-intrusive load monitoring,NILM)技术通过对总负荷电表数据进行分析,使用能量分解算法估算各个用电设备的能耗。为应对非侵入式能耗分解中的挑战,本文提出了一种基于变分自动编码器(variational autoencoder, VAE)框架的能耗分解算法。该算法充分利用编码器出色的特征提取能力,能够精确捕捉到特定电器的能耗特征,从而提升能耗分解的精度。实验结果表明,与序列到序列(sequence to sequence,S2S)方法相比,新模型在所有测试电器上的平均绝对误差降低了约10%,F1分数提升了超过15%,该结果不仅体现了VAE在能耗预测上具有较高的精度,也表明该算法在识别和分离目标电器功率信号方面有显著改进。本文提出的基于变分自动编码器框架的能耗分解算法能够有效实现负荷能量的分解,为NILM技术的实际应用开辟了新的路径。
Abstract:Non-intrusive load monitoring (NILM) technology facilitates the analysis of aggregate electrical consumption data, employing energy disaggregation algorithms to estimate the power usage of individual appliances. To tackle the inherent challenges associated with non-intrusive energy disaggregation, this paper introduces an innovative energy disaggregation algorithm that leverages a Variational Autoencoder (VAE) framework. The proposed method capitalizes on the VAE encoder's superior feature extraction capabilities, which enable the precise identification of unique energy consumption patterns for specific devices, thereby enhancing the accuracy of the disaggregation process. Empirical evaluations reveal that, in comparison to the conventional Sequence to Sequence (S2S) approach, the newly developed model achieves a reduction of approximately 10% in mean absolute error across all tested appliances, alongside a more than 15% improvement in the F1 score. These findings not only underscore the enhanced precision of the VAE in energy prediction but also highlight its significant advancements in the recognition and isolation of target appliance power signatures. Consequently, the VAE-based energy disaggregation algorithm presented herein represents a promising development, effectively contributing to the decomposition of aggregate load energy and paving the way for broader practical applications of NILM technology.
keywords: non-intrusive load monitoring variational autoencoder Feature Extraction energy disaggregation
文章编号:20241011001 中图分类号: 文献标志码:
基金项目:中国南方电网公司科技项目 (066600KK52222044/GZKJXM20222165)
作者 | 单位 | 邮编 |
黄宇* | 贵州电网有限责任公司电力科学研究院 | 550002 |
Author Name | Affiliation | Postcode |
huangyu | Electric Power Research Institute of Guizhou Power Grid Co., Ltd. | 550002 |
引用文本: