###
DOI:
本文二维码信息
基于改进粒子群算法的综合能源系统低碳控制策略
王子涵1, 张 凡1, 吴 晨2, 邵恩泽1, 汤 雷3
(1.江苏方天电力技术有限公司 南京;2.国网江苏省电力有限公司;3.国网江苏省电力有限公司信息通信分公司 南京)
Low Carbon Control Strategy for Integrated Energy Systems Based on Improved Particle Swarm Optimization Algorithm
WANG Zihan1, ZHANG Fan1, WU Chen2, SHAO Enze1, TANG Lei3
(1.Jiangsu Frontier Electric Technology Co,Ltd;2.State Grid Jiangsu Electric Power Co,Ltd;3.Information Communication Branch,State Grid Jiangsu Electric Power Co,Ltd)
摘要
相似文献
本文已被:浏览 2次   下载 0
投稿时间:2024-10-08    修订日期:2024-11-27
中文摘要: 综合能源系统(Integrated Energy System,IES)是构建清洁低碳、安全高效的现代能源体系的重要举措。为应对传统优化算法难以有效处理复杂的非线性关系及高维控制模型的问题,本文提出了一种基于改进粒子群算法(Particle Swarm Optimization,PSO)的综合能源系统低碳控制策略。具体围绕IES经济、环保与平衡运行目标,构建了考虑总成本、碳排量及系统不平衡差额3个指标的多目标多约束优化模型。然后,将改进的自适应权重因子和柯西变异策略引入标准粒子群算法以提升全局收敛性和种群多样性。最后,以某园区为研究对象进行算例仿真。研究表明:改进后的粒子群算法具有良好的全局适应性和更快的收敛速度,使得系统经济成本未有明显增长的同时有效降低了碳排放量,研究成果可为IES总体规划提供理论支撑。
Abstract:Integrated Energy System (IES) is an important measure to build a clean, low-carbon, safe and efficient modern energy system. To address the problem of traditional optimization algorithms being unable to effectively handle complex nonlinear relationships and high-dimensional control models, this paper proposes a low-carbon control strategy for integrated energy systems based on an improved particle swarm optimization (PSO) algorithm. A multi-objective and multi constraint optimization model considering three indicators, namely total cost, carbon emissions, and system imbalance, was constructed specifically around the economic, environmental, and balanced operation goals of IES. Then, the improved adaptive weight factors and Cauchy mutation strategy are introduced into the standard particle swarm algorithm to enhance global convergence and population diversity. Finally, a numerical simulation was conducted using a certain park as the research object. Research has shown that the improved particle swarm algorithm has good global adaptability and faster convergence speed, effectively reducing carbon emissions without significant increase in system economic costs. The research results can provide theoretical support for IES overall planning.
文章编号:20241008004     中图分类号:    文献标志码:
基金项目:国网江苏信通公司2023年江苏碳监测服务平台电能碳全链条数据价值挖掘研发实施服务项目(SGJSXT00SGXX2310194)、方天公司2023年面向重点用户的电能碳模型构建技术研究项目。
引用文本: