###
DOI:
本文二维码信息
基于人工智能的电网调度预测模型与策略研究
贺平, 雷云江, 罗显跃, 周敬余, 王祥兰
(贵州电网有限责任公司铜仁供电局)
Development of Artificial Intelligence-based Grid Dispatch Prediction Models and Strategies
He Ping, Lei Yunjiang, Luo Xianyue, Chow King Yu, Wang Xianglan
(Tongren Power Supply Bureau of Guizhou Power Grid Co.)
摘要
相似文献
本文已被:浏览 11次   下载 0
投稿时间:2024-09-30    修订日期:2024-09-30
中文摘要: 电力行业正处于智能化转型的关键时期,电网调度预测模型与策略的研究成为推动这一进程的重要力量。本文综述了人工智能技术在电网调度中的应用,重点分析了机器学习、深度学习及强化学习算法在预测模型构建和策略优化中的关键作用。文章深入探讨了这些技术在处理大规模数据、实时数据分析及预测方面的显著优势,并详尽阐述了构建高效预测模型所需的关键技术和计算方法。进一步地,本文提出了人工智能在多目标优化和实时调度策略中的应用,强调了其在提升电网运营效率和增强电网安全保障方面的潜力。最后,对电网调度智能化的未来走向进行了展望,包括基础理论研究的加强、合作性研究环境的构建、技术应用的深入以及技术伦理学和安全性议题的关注。本文的创新之处在于深度融合人工智能技术与电网调度,为电力行业的智能化发展提供了新的视角和方法。
Abstract:The power industry is in a critical period of intelligent transformation, and the research of grid dispatch prediction models and strategies has become an important force to promote this process. This paper reviews the application of artificial intelligence technologies in grid scheduling, focusing on the key role of machine learning, deep learning and reinforcement learning algorithms in forecast model construction and strategy optimisation. The article delves into the significant advantages of these techniques in handling large-scale data, real-time data analysis and prediction, and elaborates on the key techniques and computational methods required to construct efficient prediction models. Further, the paper presents the application of AI in multi-objective optimisation and real-time scheduling strategies, highlighting its potential for improving grid operational efficiency and enhancing grid safety and security. Finally, an outlook on the future direction of grid scheduling intelligence is provided, including the enhancement of fundamental theoretical research, the construction of a collaborative research environment, the deepening of technological applications, and the focus on technological ethics and security topics. The innovation of this paper lies in the deep integration of AI technology and grid scheduling, which provides new perspectives and methods for the intelligent development of the power industry.
文章编号:20240930004     中图分类号:    文献标志码:
基金项目:
引用文本: