###
DOI:
本文二维码信息
智能电网中的自适应安全策略:机器学习算法的演进与应用
任毅, 雷云江, 王祥兰, 贺平, 罗显跃
(贵州电网有限责任公司铜仁供电局)
Adaptive security strategies in smart grids: evolution and application of machine learning algorithms
Ren Yi, Lei Yunjiang, Wang Xianglan, He Ping, Luo Xianyue
(Tongren Power Supply Bureau of Guizhou Power Grid Co.)
摘要
相似文献
本文已被:浏览 9次   下载 0
投稿时间:2024-09-30    修订日期:2024-09-30
中文摘要: 智能电网作为电力行业的关键技术,网络安全性问题正日益凸显。本研究聚焦于自适应安全策略及其在机器学习算法中的应用演进,旨在应对智能电网所遭遇的网络安全挑战。研究首先对智能电网面临的网络安全问题进行了细致分析,确立了机器学习在构建安全策略中的核心地位。继而,深入探讨了自适应安全策略的理论基础,包括对概念的明确界定、理论模型的构建,以及与传统方法的深入对比分析。在这一基础上,进一步剖析了算法优化的关键步骤,涵盖了特征工程、机器学习模型的精心选择与优化,以及模型评估的严谨标准与方法。研究还对自适应安全策略的技术实现进行了前瞻性探讨,并对未来智能电网安全研究的趋势进行了展望。本文的创新之处在于,将自适应安全策略与机器学习算法相融合,为智能电网网络安全领域提供了创新的解决途径。
Abstract:Smart grids, as a key technology in the power industry, are becoming more and more prominent in cybersecurity issues. This study focuses on the evolution of adaptive security policies and their application in machine learning algorithms, aiming to address the cybersecurity challenges encountered in smart grids. The study first analyses the cybersecurity issues facing smart grids in detail, and establishes the centrality of machine learning in the construction of security policies. Following this, the theoretical foundations of adaptive security strategies are discussed in depth, including a clear definition of concepts, the construction of theoretical models, and an in-depth comparative analysis with traditional methods. On this basis, the key steps of algorithm optimisation are further analysed, covering feature engineering, careful selection and optimisation of machine learning models, and rigorous criteria and methods for model evaluation. The study also provides a prospective discussion on the technical implementation of adaptive security policies and an outlook on the future trend of smart grid security research. The innovation of this paper is that it integrates adaptive security policies with machine learning algorithms, which provides an innovative solution in the field of smart grid network security.
文章编号:20240930003     中图分类号:    文献标志码:
基金项目:
引用文本: