###
DOI:
电力大数据:2024,27(12):-
←前一篇   |   后一篇→
本文二维码信息
基于多模型融合的低压用户电能表运行误差在线监测方法研究
杨婧, 宋强, 叶文波, 付卿卿
(贵州电网有限责任公司)
Research on online monitoring method of low voltage user electric energy meter operation error based on multi-model fusion
YANGJING, songqiang, yewenbo, fuqingqing
(Guizhou Power Grid Co,Ltd.)
摘要
图/表
参考文献
相似文献
本文已被:浏览 50次   下载 35
投稿时间:2024-09-26    修订日期:2024-12-24
中文摘要: 针对在运低压电能表异常检测准确率较低和运行误差偏差较大的实际问题,结合低压用户只采集日冻结表码数据的实际情况,提出一种基于多模型融合的低压用户电能表运行误差在线监测方法。首先通过基于离群点算法改进相关性分析模型,提升电能表异常识别能力;其次,通过岭回归估算台区可变损耗,改进运行误差分析模型,克服变量相关性和非线性因素对电能表运行误差值计算的不利影响;然后提出校验模型,深入挖掘用户日电量与台区线损间的关联关系;最后对所提模型进行融合综合评判,实现低压用户电能表误差精准监测。算例采用某省真实数据分析,结果表明文中所提方法在低压用户电能表异常识别和误差监测等方面具有更高的准确性和鲁棒性。
Abstract:To address the practical issues of low anomaly detection accuracy and large operation error deviation of low-voltage electric energy meters in operation, combined with the actual situation that low-voltage users only collect daily frozen meter code data,we propose a detection method for online monitoring method of low voltage user electric energy meter operation error based on multi-model fusion.First, we enhance the anomaly detection capability by improving the correlation analysis model with an outlier detection algorithm. Next,we estimate variable losses in the substation using ridge regression to improve the operational error analysis model, overcoming the adverse effects of variable correlation and nonlinear factors on the operational error values of electricity meters. Then, we propose a review model to deeply explore the association between user daily electricity consumption and residential distribution area line losses. Finally, we integrate and comprehensively evaluate the proposed models to achieve precise detection of abnormal low-voltage electricity meters. The case study, based on real data from a province, demonstrates that the method presented herein exhibits high accuracy and superior robustness in anomaly detection and error estimation.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: