###
DOI:
电力大数据:2024,27(9):-
←前一篇   |   后一篇→
本文二维码信息
基于双重注意力机制与迁移学习的风力发电机行星齿轮箱故障诊断
张飞, 万安平
(浙大城市学院)
Fault diagnosis of planetary gearbox of wind turbine based on double attention mechanism and transfer learning
zhang fei, wan anping
(Zhejiang University City College)
摘要
图/表
参考文献
相似文献
本文已被:浏览 19次   下载 10
投稿时间:2024-09-01    修订日期:2024-10-18
中文摘要: 针对风力发电机行星齿轮箱故障数据稀缺难以提取,进而导致最终故障识别准确率较低的问题,提出一种双重注意力机制与迁移学习相结合的故障诊断方法。首先,将行星齿轮箱原始振动数据进行归一化后输入卷积神经网络中提取特征;然后将特征图分别输入到位置注意力机制和通道注意力机制中提取高级特征;最后进行特征融合输出诊断结果。在变工况迁移时,将源域模型通过参数迁移到目标域工况后进行微调并输出预测类别。试验结果表明所提方法迁移后的故障识别准确率在98%以上,相比于支持向量机(SVM)、极限梯度提升(XGBoost)等其它模型有大幅度提高。
Abstract:To solve the problem that the fault data of wind turbine planetary gear box is scarce and difficult to extract, which leads to the low accuracy of the final fault identification, a fault diagnosis method combining dual attention mechanism and transfer learning was proposed. Firstly, the original vibration data of the planetary gear box are normalized and input into the convolutional neural network to extract the features. Then the feature maps are input into the location attention mechanism and channel attention mechanism respectively to extract advanced features. Finally, feature fusion is performed to output diagnostic results. In the case of variable condition migration, the source domain model is fine-tuned and the prediction category is output after the parameter migration to the target domain condition. The experimental results show that the fault identification accuracy of the proposed method after migration is above 98%, which is significantly improved compared with other models such as support vector machine (SVM) and limit gradient lift (XGBoost).
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
引用文本: