###
DOI:
本文二维码信息
输电线路巡检机器人在树障检测中的应用与研究
吴建蓉1, 罗鑫1, 颜康1, 张啟黎1, 袁娴枚1, 万如一2, 陆丽娟2
(1.贵州电网有限责任公司电力科学研究院;2.上海浦源科技有限公司)
Application and Research of Power Transmission Line Inspection Robots in Tree Obstacle Detection
wujianrong1, Luoxin1, Yankang1, Zhangqili1, Yuan Xianmei1, Wanruyi2, LuLijuan2
(1.Electric Power Research Institute of Guizhou Power Grid Co.,Ltd.;2.Shanghai Puyuan Technology Co., Ltd)
摘要
相似文献
本文已被:浏览 2次   下载 0
投稿时间:2024-08-30    修订日期:2024-11-01
中文摘要: 在现代智能电网的输电线路巡检中,树障检测和清除是确保电力供应稳定性和安全性的重要环节。传统的人工巡检方法不仅效率低下,还存在安全隐患和高成本的问题。本文提出了一种输电线路巡检机器人树障检测方法,以提高检测的实时性、精确性和环境适应性。主要包括对三维点云数据的预处理、特征提取、特征匹配与识别、三维重建与分析以及实时监控与预警。其目的在于解决现有树障检测技术在复杂环境下的局限性,如误报、漏报和环境适应性差的问题。通过引入三维点云数据处理技术,提高了巡检机器人的检测性能,使其能够在各种光照条件、复杂背景及多变环境下稳定工作。通过实验结果表明,巡检机器人在误报率和漏报率上分别为5.1%和6.2%,显著优于传统的基于二维图像的方法。同时,系统在不同环境下表现出良好的适应性和稳定性。
Abstract:In modern smart grid transmission line inspections, tree obstacle detection and removal are crucial for ensuring the stability and safety of power supply. Traditional manual inspection methods are not only inefficient but also pose safety risks and incur high costs. This paper proposes a method for tree obstacle detection using power transmission line inspection robots to improve detection real-time, accuracy, and environmental adaptability. The approach primarily includes preprocessing of 3D point cloud data, feature extraction, feature matching and recognition, 3D reconstruction and analysis, as well as real-time monitoring and early warning. The goal is to address the limitations of existing tree obstacle detection technologies in complex environments, such as false alarms, missed detections, and poor environmental adaptability. By incorporating 3D point cloud data processing technology, the performance of the inspection robots is enhanced, enabling stable operation under various lighting conditions, complex backgrounds, and changing environments. Experimental results show that the inspection robot achieves false alarm and missed detection rates of 5.1% and 6.2%, respectively, significantly outperforming traditional 2D image-based methods. Additionally, the system demonstrates good adaptability and stability in different environments.
文章编号:20240830003     中图分类号:    文献标志码:
基金项目:
引用文本: