###
DOI:
电力大数据:2024,27(7):-
←前一篇   |   后一篇→
本文二维码信息
基于改进灰色模型的光伏发电预测输入数据计算方法
文贤馗
(贵州电网有限责任公司电力科学研究院)
Calculation Method for Input Data of Photovoltaic Power Generation Predicion Based on Improved Grey Model
wen xiankui
(Electric Power Research Institute of Guizhou Power Grid Co., Ltd.,)
摘要
图/表
参考文献
相似文献
本文已被:浏览 10次   下载 10
投稿时间:2024-08-29    修订日期:2024-09-29
中文摘要: 人工神经网络是光功率预测的主要模型之一。人工神经网络输入数据的准确性是影响光功率预测精度的主要因素。本文使用历史的实际测量的天气的准确数据,采用灰色模型GM(1,1)来预测当前的天气数据。使用灰色模型时,选择多个长度的历史数据序列来预测,用相对误差平均值来评估对历史数据的拟合效果,选择对历史数据拟合效果最好的序列预测的天气数据。把天气预报的天气数据与灰色模型预测的天气数据进行加权来得到人工神经网络的输入数据,权重根据灰色模型对历史数据的拟合效果来动态调整。对现有光伏电站数据的仿真验证了本文算法的有效性。
Abstract:Artificial neural networks are one of the main models for predicting optical power. The accuracy of input data in artificial neural networks is the main factor affecting the accuracy of optical power prediction. This article uses accurate weather data from historical measurements and uses the grey model GM(1,1) to predict the current weather data. When using the grey model, multiple lengths of historical data sequences are selected for prediction, and the average relative error is used to evaluate the fitting effect on historical data. The weather data predicted by the sequence with the best fitting effect on historical data is selected. The input data of the artificial neural network is obtained by weighting the weather data predicted by the weather forecast with the weather data predicted by the grey model. The weights are dynamically adjusted based on the fitting effect of the grey model on historical data. The simulation of existing photovoltaic power station data has verified the effectiveness of the algorithm proposed in this paper.
文章编号:     中图分类号:    文献标志码:
基金项目:贵州省科技创新人才团队(黔科合平台人才-CXTD[2022]008);南方电网科技项目(GZKJXM20222258)
引用文本: