###
DOI:
电力大数据:2024,27(7):-
←前一篇   |   后一篇→
本文二维码信息
基于WRF-LightGBM和微地形精细化天气预报的导线覆冰研究
范强1, 肖书舟1, 张厚荣2, 叶华洋1, 付鑫怡1, 吴建蓉1
(1.贵州电网有限责任公司电力科学研究院;2.南方电网科学研究院有限责任公司,广东 广州)
Research on the growth of conductor icing under complex micro terrain conditions based on WRF LightGBM refined meteorological forecasting
FanQiang1, Xiao Shuzhou1, Zhang Hourong2, Ye Huayang1, Fu Xinyi1, Wu Jianrong1
(1.Electric Power Research Institute of Guizhou Power Grid Co.Ltd;2.Southern Power Grid Scientific Research Institute Co., Ltd.)
摘要
图/表
参考文献
相似文献
本文已被:浏览 7次   下载 8
投稿时间:2024-08-25    修订日期:2024-09-13
中文摘要: 局地微地形产生的微气象环境是造成气象预报误差的重要因素之一,也是导致覆冰预报准确性不高的重要因素。利用高精度MODIS系统 15s(约500m)地形数据驱动中尺度天气研究和预报(weather research and forecasting,WRF)模式,并使用LightGBM对WRF预报进行订正,通过局地个例评估订正后覆冰预测提升效果。结果表明:在假设条件下,过冷液滴覆冰速率随温度降低先快速增加,后增长速率保持不变,且液滴粒径越大,完全冻结所需温度越低;WRF-LightGBM订正算法在山区微地形下有效提升了温度预报准确度,典型冬季寒潮条件下预测温度与实际温度的误差在2℃以内,预报准确率为76%;以典型区域杆塔覆冰为例,输入订正后的温度和相对湿度数据后,覆冰融化时段被消除,覆冰厚度曲线与实际基本一致,增长速率接近一致。
Abstract:The micro meteorological environment generated by local micro topography is one of the important factors causing meteorological forecasting errors, and also an important factor leading to the low accuracy of ice cover forecasting by power grid companies. Using high-precision MODIS system 15s (about 500m) terrain data to drive a mesoscale weather research and forecasting (WRF) model, and using LightGBM to correct the WRF forecast, the improvement effect of ice cover prediction after correction is evaluated through local case studies. The results show that under the assumed conditions, the ice deposition rate of supercooled droplets increases rapidly with decreasing temperature, and then the growth rate remains unchanged. Moreover, the larger the droplet size, the lower the temperature required for complete freezing; The WRF LightGBM correction algorithm effectively improves the accuracy of temperature forecasting in mountainous micro terrain, with an error of less than 2 ℃ between predicted and actual temperatures under typical winter cold wave conditions, and a forecasting accuracy of 76%; In a case of ice cover on a tower, after inputting corrected temperature and relative humidity data, the melting period of the ice cover was eliminated, and the ice cover thickness curve was basically consistent with the actual situation, with a growth rate close to the same.
文章编号:     中图分类号:    文献标志码:
基金项目:基于微地形覆冰空间分布特性的降尺度电网覆冰数值预测技术研究(GZKJXM20222326、GZKJXM20222394)
引用文本: