###
DOI:
电力大数据:2024,27(10):-
←前一篇   |   后一篇→
本文二维码信息
基于IABODE算法求解电网故障诊断解析模型
李蕾1, 徐泽1, 刘翔毓2
(1.贵州电网有限责任公司遵义供电局;2.贵州大学)
An improved adaptive binary operator differential evolutionary algorithm for solving analytical models of grid fault diagnosis
lilei1, xuze1, liuyuxiang2
(1.Guizhou Power Grid Co., Ltd. Zunyi Power Supply Bureau;2.Guizhou University)
摘要
图/表
参考文献
相似文献
本文已被:浏览 140次   下载 133
投稿时间:2024-08-23    修订日期:2024-11-02
中文摘要: 电网故障诊断在电力系统运行中起着至关重要的作用。为了在故障发生后快速准确地诊断出故障区域,本文提出了一种改进的自适应二进制算子差分进化算法(improved adaptive binary differential evolutionary, IABODE)。该算法通过直接以二进制编码个体,避免了浮点数到二进制数的转换过程,同时设计了二进制和成对变换算子,并采用自适应参数调节来提高算法的搜索性能和种群多样性。通过一个典型的四变电站系统以及一次电网故障案例测试改进的电网故障诊断模型,从准确性、速度和收敛性等多个角度对该算法进行了比较分析,结果表明其在解决电网故障问题上优于其他四种流行的元启发式算法。
Abstract:Grid fault diagnosis plays an important role in power system operation. In order to diagnose the fault area quickly and accurately after a fault occurs, this paper proposes an improved adaptive binary operator differential evolutionary algorithm (IABODE). The algorithm avoids the conversion process from floating-point number to binary number by directly encoding individuals in binary, and designs binary and pairwise transformation operators, and uses adaptive parameter adjustment to improve the search performance and population diversity of the algorithm.Through a typical four-substation system and a power grid fault case test of the improved power grid fault diagnosis model, the algorithm is compared and analyzed from multiple perspectives such as accuracy, rapidity and convergence, and the results show that it is superior to the other four popular meta-heuristic algorithms in solving the power grid fault problem.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: