###
DOI:
电力大数据:2024,27(9):-
←前一篇   |   后一篇→
本文二维码信息
基于跨域少样本学习的电网作业违章动作分类
孟令雯1, 班国邦1, 刘芳媛2, 邱伟3, 贺迪4, 张澜4, 王思雨4
(1.贵州电网有限责任公司电力科学研究院;2.南方电网大数据服务有限公司;3.贵州创星电力科学研究院有限责任公司;4.天津大学电气自动化与信息工程学院)
Illegal action classification in power grid operation based on cross-domain few-shot learning
MENG Lingwen1, BAN Guobang1, LIU Fangyuan2, QIU Wei3, HE Di4, ZHANG Lan4, WANG Siyu4
(1.Electric Power Research Institute of Guizhou Power Grid Co.;2.Southern Power Grid Big Data Services Co., Ltd.;3.Guizhou Chuangxing Electric Power Research Institute Co., Ltd.;4.School of Electrical and Information Engineering,Tianjin University)
摘要
图/表
参考文献
相似文献
本文已被:浏览 18次   下载 10
投稿时间:2024-08-22    修订日期:2024-10-31
中文摘要: 为了实现智能监控电网作业中的违章动作分类,以提高电力系统运维的效率和安全性,减少对样本标注的依赖,本文提出了一种基于跨域少样本学习的电网作业违章动作分类方法。该方法设计了一种创新的跨域对齐机制,通过构建域间生成机制和域内扩展机制,生成跨域辅助数据集和目标域扩展数据集,帮助分类模型更好地理解和适应不同域之间的特征变化、以及增强模型在目标域中的不变性学习能力,从而提高在电网作业场景中不同客观因素下违章动作分类的准确性和效率。实验结果表明,提出方法有效地降低了样本标注的时间成本和对大规模标注数据的依赖性,通过跨域少样本学习方法,将有标注的源域数据与无标注的目标域数据输入分类模型,实现了对电网作业场景中违章动作的高效准确分类,展现出在实际电网运维中的广泛应用前景。
Abstract:To realize the classification of illegal actions in intelligent monitoring grid operations, improve the efficiency and safety of power system operation and maintenance, and reduce the dependence on sample labeling, this paper proposes a method which is based on cross-domain few-shot learning for illegal action classification in power grid operations. In this method, we designed an innovative cross-domain alignment mechanism which helps the classification model to better understand and adapt to the feature changes between different domains, and enhances the model"s invariance learning ability in the target domain, thereby improving the accuracy and efficiency of the classification of illegal actions under different objective factors in the power grid operation scenario. Experimental results show that the effectiveness of the proposed method in reducing the time cost of sample annotation and the dependence on large-scale annotated data, and through the cross-domain few-shot learning method, the annotated source domain data and the unlabeled target domain data are input into the classification model, which realizes the efficient and accurate classification of illegal actions in the power grid operation scenario, and shows a wide application prospect in the actual power grid operation and maintenance.
文章编号:     中图分类号:    文献标志码:
基金项目:贵州电网有限责任公司科技项目(GZKJXM20222524)
引用文本: