###
DOI:
电力大数据:2025,28(02):-
←前一篇   |   后一篇→
本文二维码信息
电站风烟系统设备故障智能在线预警与诊断系统研究与应用
李栋华, 王念
(上海市东方海事工程技术有限公司)
Research and Application of Intelligent Online Early Warning and Diagnosis System for Faults of Wind and Smoke System Equipment in Power Station
li donghua, wangnian
(Shanghai Dongfang Maritime Engineering Technology Co.)
摘要
图/表
参考文献
相似文献
本文已被:浏览 31次   下载 5
投稿时间:2024-08-16    修订日期:2025-02-17
中文摘要: 在当今电力行业加速迈向数字化与智能化的转型浪潮中,对火电机组低成本运营以及精细化管理的要求也越来越高。该文分析了建设电站智能风烟系统的必要性,并详细设计了一个 智能风烟系统一体化云平台;基于机器学习和统计学方法,对电站风烟系统设备故障智能在线预警与诊断方法进行了研究与应用,为电站智能风烟系统的建设提供了有益的参考。
中文关键词: 智能风烟  故障诊断  故障预警  大数据
Abstract:In the current wave of accelerated digitalization and intelligent transformation within the power industry, the demand for low-cost operation and refined management of thermal power units has grown significantly. This paper analyzes the necessity of constructing an intelligent wind and smoke system for power plants and provides a detailed design of an integrated cloud platform for such a system. At the same time, an online intelligent early warning and diagnosis system for wind and smoke system equipment faults in power station is studied and applied based on machine learning and statistical methods, which provides a useful reference for the construction of intelligent wind-smoke system in power stations.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: