###
DOI:
电力大数据:2024,27(10):-
←前一篇   |   后一篇→
本文二维码信息
基于遗忘速度改进CLPSO算法的多区域电力系统经济调度
徐升平1, 王阳2, 阿里-瓦格迪-穆罕默德3, 侯赛因-布什卡拉4, 张力心1, 包敏1
(1.贵州电网有限责任公司安顺供电局;2.贵州省电力系统智能技术重点实验室,贵州大学电气工程学院;3.埃及开罗大学统计研究生院运筹学系;4.沙特阿拉伯哈夫阿尔巴廷大学电气工程系)
Multi-area economic dispatch based on improved comprehensive learning particle swarm optimization algorithm with forgetting velocity
xushengping1, wangyang2, Ali Wagdy Mohamed3, Houssem R.E.H. Bouchekara4, zhanglixin1, baomin1
(1.Anshun Power Supply Bureau of Guizhou Power Grid Co., Ltd.;2.Guizhou Key Laboratory of Intelligent Technology in Power System, College of Electrical Engineering, Guizhou University;3.Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University;4.Department of Electrical Engineering, University of Hafr Al Batin)
摘要
图/表
参考文献
相似文献
本文已被:浏览 7次   下载 2
投稿时间:2024-07-30    修订日期:2024-11-12
中文摘要: 传统的电力系统经济调度(ED)方法通常将整个系统内的发电机视为一个整体进行优化。然而,随着电力系统规模的不断扩大,单一系统内的电力调度逐渐受到局限,为此,现代电力系统通常被划分为多个区域,每个区域通过联络线实现电力的传输与交换。这种多区域的经济调度(MAED)在数学模型上尤其复杂,特别是当需要考虑阀点效应、多燃料选择以及联络线传输容量等多重约束时,问题就演变为一个涉及多约束、多模态、非线性与多变量耦合的高度复杂的优化问题。为了解决这一挑战,本文提出了一种名为FV-ICLPSO的改进型综合学习粒子群优化算法。针对传统CLPSO算法收敛速度较慢的缺点,FV-ICLPSO引入了三项关键改进:(1)设计了一种自适应策略,根据算法的迭代进程和问题的维度动态调整学习概率,以增强算法的全局搜索能力;(2)提出了一种自适应粒子选择方法,赋予不同适应度等级的粒子以不同的选择范围,从而优化其学习范例的选择;(3)改进了速度更新公式,通过引入基于遗忘先前速度的机制,促使粒子向更有潜力的区域移动。为了验证FV-ICLPSO的性能,本文首先在30个CEC2014基准测试函数上进行了广泛的实验对比分析,随后将其应用于具有3区域10机组系统和4区域40机组系统的MAED问题中。仿真结果表明,与传统的CLPSO算法、其他几种极为优异的优化算法以及近年来相关文献中的结果相比,FV-ICLPSO在解的质量、收敛速度、鲁棒性和统计显著性方面都表现出了显著的竞争力。
Abstract:Traditional economic dispatch (ED) methods in power systems typically treat all generators within the system as a single entity for optimization. However, as the scale of power systems continues to expand, the limitations of such monolithic dispatch approaches have become increasingly apparent. Consequently, modern power systems are often divided into multiple regions, with power transfer and exchange facilitated through interconnection lines. Mathematically, this multi-area economic dispatch (MAED) becomes particularly complex when valve-point effects, multiple fuel options, and transmission capacity constraints of interconnection lines are considered. This transforms the prob-lem into a highly intricate optimization challenge characterized by multi-constraint, multimodal, nonlinear, and multivariable coupling. To address this challenge, we propose an enhanced version of the comprehensive learning particle swarm optimization algorithm, named FV-ICLPSO. This algo-rithm incorporates three critical improvements to mitigate the slow convergence issues observed in the traditional CLPSO algorithm: (1) A novel adaptive strategy that dynamically adjusts the learning probability based on the iteration progress and problem dimensionality, thereby enhancing global search capabilities; (2) An adaptive particle selection method that assigns different selection ranges to particles based on their fitness levels, optimizing the choice of learning exemplars; (3) An im-proved velocity update formula that incorporates a mechanism to forget previous velocities, encour-aging particles to explore more promising regions of the search space. To validate the performance of FV-ICLPSO, extensive comparative experiments were conducted on 30 benchmark functions from CEC2014. Subsequently, the algorithm was applied to MAED problems involving a 3 area with 10 Unit system and a 4 area with 40 Unit system. The simulation results demonstrate that FV-ICLPSO outperforms the traditional CLPSO, several other advanced optimization algorithms, and the results reported in recent literature, particularly in terms of solution quality, convergence speed, robustness, and statistical significance.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: