本文已被:浏览 23次 下载 26次
投稿时间:2024-07-22 修订日期:2024-08-16
投稿时间:2024-07-22 修订日期:2024-08-16
中文摘要: 针对当前电网运行海量数据未充分挖掘有效信息,且调度信息多源异构、非结构化的特征,电力调度无法及时得到有效故障信息,致使发生电力调度在抢修工作中调度处置效率降低,故障信息传递不及时、不准确等情况。本文提出基于注意力机制BiLSTM-CRF模型的电网故障处置知识图谱构建技术,依托构建的电网故障处置知识图谱,高效筛选电网故障有效信息,形成智能故障辅助决策应用,切实提高电网故障抢修效率。
Abstract:In view of the fact that the massive data in the current power grid operation has not fully mined effective information, and the dispatching information is heterogeneous and unstructured from multiple sources, power dispatching cannot obtain effective fault information in a timely manner, resulting in a reduction in the efficiency of dispatching and processing of power dispatching during emergency repair work, and fault information The delivery is not timely or accurate, etc. This paper proposes a power grid fault handling knowledge graph construction technology based on the attention mechanism BiLSTM-CRF model. Relying on the constructed power grid fault handling knowledge graph, it can efficiently screen effective information about power grid faults, form an intelligent fault auxiliary decision-making application, and effectively improve the efficiency of power grid fault repair.
文章编号: 中图分类号: 文献标志码:
基金项目:中国南方电网一般科技项目(GZKJXM20210413); 贵州省科技支撑项目(黔科合支撑[2023]一般345)
作者 | 单位 | |
杜刃刃* | 贵州电网有限责任公司贵安供电局 | 942093376@qq.com |
范俊秋 | 贵州电网有限责任公司贵安供电局 | |
袁龙 | 贵州电网有限责任公司贵安供电局 | |
谢才科 | 贵州电网有限责任公司贵安供电局 | |
宋达 | 贵州电网有限责任公司贵安供电局 | |
罗希 | 贵州电网有限责任公司贵安供电局 | |
谢威 | 贵州电网有限责任公司贵安供电局 |
引用文本: