本文已被:浏览 68次 下载 36次
投稿时间:2024-06-30 修订日期:2024-11-02
投稿时间:2024-06-30 修订日期:2024-11-02
中文摘要: 为解决以往变电站中人工巡检效率低、准确率差等问题,本文探索了两类基于图像分析的变电站隐患识别算法。相较于基于场景变化检测的隐患识别算法,基于目标检测的隐患识别算法不受限于基准图像,且综合识别效果更优,能够对变电站的各类隐患进行有效识别。本文在对大量变电站隐患图像进行标注后,在YOLOv8深度学习框架的基础上进行训练,训练后的模型经由部分隐患图像组成的测试集测试后,结果表明隐患检出率为82.10%,隐患误检率为14.64%。本文提出的基于目标检测的变电站隐患识别算法识别准确率高、识别速度快,且部署较为简单,能够有效取代人工巡检工作,显著提高变电站内的隐患识别效率和准确性,对保障变电站安全稳定运行具有重要意义。
Abstract:To address the issues of low efficiency and poor accuracy in manual inspections in substations, this paper explores two types of substation hazard identification algorithms based on image analysis. Compared to the hazard identification algorithm based on scene change detection, the target detection-based algorithm is not limited by benchmark images and has better comprehensive recognition effects, enabling effective identification of various hazards in substations. After annotating a large number of hidden danger images of substations, the model was trained on the YOLOv8 deep learning framework. The trained model was tested on a test set consisting of some hidden danger images, and the results showed that the hidden danger detection rate was 82.10%, and the hidden danger false detection rate was 14.64%. The proposed target detection-based substation hazard identification algorithm has high recognition accuracy, fast recognition speed, and simple deployment, which can effectively replace manual inspection work. It significantly improves the efficiency and accuracy of hazard identification in substations, which is of great significance for ensuring the safe and stable operation of substations.
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
迟钰坤* | 山东鲁软数字科技有限公司 | 809304992@qq.com |
纪洪伟 | 山东鲁软数字科技有限公司 | |
焦之明 | 山东鲁软数字科技有限公司 | |
巩方波 | 山东鲁软数字科技有限公司 | |
刘兆霞 | 山东鲁软数字科技有限公司 | |
王倩倩 | 山东鲁软数字科技有限公司 |
引用文本: