本文已被:浏览 16次 下载 19次
投稿时间:2024-06-15 修订日期:2024-10-18
投稿时间:2024-06-15 修订日期:2024-10-18
中文摘要: 本文通过应用机器视觉技术对电力二次设备的巡检流程及其技术保障措施进行了全面分析,并探索了实现自动化巡检的可行性。研究过程涉及根据设备图像的分析结果进行自动化巡检,首先获取设备的巡检图像,随后利用计算机视觉技术对图像特征进行分析和预处理。经过降噪和提纯处理后,建立了区域分布式检测模型,为巡检提供了基础。在此基础上,本研究采用局部最小滤波模板深入分析了巡检原理,并对巡检场景进行了三维重构。通过梯度下降方法构建的变结构分布模型,以高灰度值位置的边缘像素点为中心,成功实现了电力二次设备的视觉重构识别,进而形成了自动化管理与控制机制。仿真实验验证了所提出方法的有效性,表明该方法不仅能够快速准确地完成特征识别,而且还能精确引导自动巡检过程。这一成果为电力二次设备的自动化巡检提供了新的技术支持,展示了机器视觉在该领域中的应用潜力。
Abstract:This article provides a comprehensive analysis of the inspection process and technical support measures for secondary power equipment by applying machine vision technology, exploring the feasibility of achieving automated inspections. The research involves conducting automated inspections based on the analysis results of equipment images, starting with capturing inspection images of the equipment, followed by analyzing and preprocessing image features using computer vision technology. After noise reduction and purification treatments, a regional distributed detection model was established, laying the foundation for inspections. On this basis, the study used a local minimum filter template to deeply analyze the inspection principles and perform a three-dimensional reconstruction of the inspection scenes. A variable structure distribution model constructed by gradient descent method centered around edge pixel points at high gray value positions successfully achieved visual reconstruction recognition of secondary power equipment, leading to the formation of an automated management and control mechanism. Simulation experiments verified the effectiveness of the proposed method, demonstrating that it can not only quickly and accurately complete feature recognition but also precisely guide the automatic inspection process. This achievement provides new technical support for the automated inspection of secondary power equipment and showcases the potential applications of machine vision in this field.
keywords: machine vision power equipment patrol maintenance secondary equipment maintenance intelligent inspection artificial intelligence
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本: