###
DOI:
电力大数据:2024,27(3):-
←前一篇   |   后一篇→
本文二维码信息
面向电力铁塔倾角检测的电磁式微风能量采集器研究
徐长宝1, 辛明勇1, 古庭赟1, 薛诗涵2, 王熙2, 鲁彩江2
(1.贵州电网有限责任公司电力科学研究院;2.西南交通大学机械工程学院)
Research on electromagnetic wind energy harvester for power tower inclination detection
XU CHANGBAO1, XIN MINGYONG1, GU TINGYUN1, XUE SHIHAN2, WANG XI2, LU CAIJIANG2
(1.Guizhou Electric Power Research Institute;2.Southwest Jiaotong University,School of Mechanical Engineering)
摘要
图/表
参考文献
相似文献
本文已被:浏览 88次   下载 86
投稿时间:2024-06-12    修订日期:2024-06-26
中文摘要: 电力铁塔倾斜检测是保障高压输电线路系统的安全和稳定运行的重要手段,目前状态检测设备都存在功耗高,依赖使用化学电池供电等问题。本文提出了一种集成自供能铁塔倾角无线传感系统,设计电磁能量采集器收集高空铁塔风能,通过低功耗能源管理电路进行能源存储与负载供电。用电磁仿真和实验验证了系统的性能,测试结果显示,采集器可以在2m/s的风速下启动,在8m/s的风速下,装置空载情况的RMS电压为1.25V,输出功率为8.2mW。用BQ25570芯片搭建低功耗能源管理电路,通过升压后输出3.3V对倾角传感器进行了供能测试。根据实验结果,此装置可以为铁塔倾角传感器或其他小型电气设备供电,这将为自供能物联网无线传感网络节点提供技术支持。
Abstract:Tilt detection of iron towers is crucial for ensuring the safety and stable operation of high-voltage transmission line systems. However, current state detection devices suffer from high power consumption and dependence on chemical batteries. This paper proposes an integrated self-powered wireless sensing system for tower tilt angles. An electromagnetic energy harvester is designed to capture wind energy from high-altitude towers, and low-power energy management circuits are utilized for energy storage and load power supply. The performance of the system is validated through electromagnetic simulation and experiments. Test results demonstrate that the harvester can start at wind speeds as low as 2m/s, and at 8m/s wind speed, the RMS voltage under no-load conditions is 1.25V with an output power of 8.2mW. A low-power energy management circuit is constructed using the BQ25570 chip, which provides power to the tilt angle sensor after boosting to 3.3V. Based on experimental results, this device can power tilt angle sensors or other small electrical devices, providing technical support for self-powered IoT wireless sensing network nodes.
文章编号:     中图分类号:    文献标志码:
基金项目:贵州电网有限责任公司科技项目(GZKJXM20220045); 国家自然科学基金项目(52175519,61801402); 四川省杰出青年科技人才项目(2020JDJQ0038); 贵州省科技创新人才技术团队项目(黔科合平台人才[2020]5015)
引用文本: