###
DOI:
电力大数据:2024,27(3):-
←前一篇   |   后一篇→
本文二维码信息
一种基于频谱感知的智能电网需求响应管理方法
张永棠
(广东白云学院 大数据与计算机学院)
A method of smart grid demand response management based on spectrum sensing
Zhang yongtang
(Guangdong Baiyun University)
摘要
图/表
参考文献
相似文献
本文已被:浏览 102次   下载 115
投稿时间:2024-05-06    修订日期:2024-05-24
中文摘要: 将认知无线电技术引入智能电网需求响应管理(DRM),是缓解频谱资源的短缺、提高通信质量的重要方法。为确保低信噪比下的频谱感知性能,本文研究了一种基于实时定价的DRM方法,并给出了全局优化问题的表达式,求解智能电网的社会效益最大化。采用基于广义随机共振(GSRED)算法的能量检测算法,以实现可靠的频谱感知。同时,分析了中断概率和感知时间对DRM控制性能的影响。仿真结果表明,设置合理的感测时间可以最大化智能电网的社会效益,并优化DRM控制性能,而不会过度增加DRM系统的复杂性和感知延迟。此外,在频谱感知中应用GSRED算法进行能量检测,可获得更低的中断概率和更好的控制性能。
Abstract:Introducing cognitive radio technology into smart grid demand response management (DRM) is an important method to alleviate the shortage of spectrum resources and improve the quality of communication. In order to ensure the spectrum sensing performance under low SNR, this paper studies a DRM method based on real-time pricing, and gives the expression of the global optimization problem to solve the social benefit maximization of smart grid. The energy detection algorithm based on generalized stochastic resonance (GSRED) algorithm is adopted to achieve reliable spectrum sensing. The influence of outage probability and perception time on DRM control performance is also analyzed. The simulation results show that setting a reasonable sensing time can maximize the social benefits of the smart grid and optimize the DRM control performance without excessively increasing the complexity and sensing delay of the DRM system. In addition, applying GSRED algorithm to energy detection in spectrum sensing can obtain lower outage probability and better control performance.
文章编号:     中图分类号:TM734??????????????????????    文献标志码:
基金项目:国家自然科学基金(61962036);广东省高校重点平台与特色创新项目(2020KTSCX771);广东省高校重点领域专项(高端装备制造)项目(2022ZDZX3038)
引用文本: