本文已被:浏览 140次 下载 132次
投稿时间:2024-03-03 修订日期:2024-03-31
投稿时间:2024-03-03 修订日期:2024-03-31
中文摘要: 针对电厂中现役燃气轮机故障样本少,以往的故障诊断方法依赖于海量的带有故障标签的数据,无法在实际生产中取得预期的诊断效果的现象,本文将重点着眼于利用贝叶斯网络进行反事实推理,完成对燃气轮机故障原因的分析。本文首先介绍了贝叶斯网络的基本原理,其次将故障模式和影响分析及故障树技术用于贝叶斯网络的搭建,弥补了基于数据驱动的故障诊断方法缺少专业知识支撑的缺陷,最后通过实际案例分析,表明了这一方法用于燃气轮机的故障诊断时,可以根据燃气轮机在运行中出现的异常现象,分析出可能出现的故障,以及相应的故障原因,帮助运行及检修人员及时发现故障,及时排除故障。为实际生产中的燃气轮机的故障诊断技术提供了一种灵活,高效,可靠的方法。
Abstract:Due to the limited amount of gas turbine fault samples in power plants in active service and previous fault diagnosis methods relying on a significant number of data with fault labels, which can’t achieve the expected diagnostic effect in practical production, this paper focuses on using Bayesian network for counterfactual reasoning to analyze the causes of gas turbine faults. This paper first introduces the basic principles of Bayesian networks, then applies fault mode and effects analysis as well as fault tree analysis to construct Bayesian networks, addressing the lack of professional knowledge support in data-driven fault diagnosis methods. Finally, through practical case analysis, it is demonstrated that this method can analyze possible faults and their causes based on abnormal phenomena during gas turbine operation, helping operators and maintenance personnel to timely identify and resolve faults. This flexible, efficient, and reliable method provides a new approach for gas turbine fault diagnosis in practical production.
keywords: gas turbine fault diagnosis Bayesian network counterfactual reasoning failure mode and effects analysis
文章编号: 中图分类号: 文献标志码:
基金项目:
作者 | 单位 | |
白晔* | 华北电力大学 | 645573224@qq.com |
朱萍 | 华北电力大学 |
Author Name | Affiliation | |
Bai Ye | North China Electric Power University | 645573224@qq.com |
Zhu Ping | North China Electric Power University |
引用文本: