###
DOI:
电力大数据:2024,27(1):-
←前一篇   |   后一篇→
本文二维码信息
基于改进DBSCAN算法的电力设备坐标研究
陆嘉铭, 朱洪志, 贺静, 张一彦, 高翔, 陆慧玲, 李丹戎
(国网上海嘉定供电公司)
Research on Power Equipment Location Information Based on Improved Density Clustering Algorithm
LU Jiaming, ZHU Hongzhi, HE Jing, ZHANG Yiyan, GAO Xiang, LU Huiling, LI Danrong
(State Grid Shanghai Jiading Power Supply Company)
摘要
图/表
参考文献
相似文献
本文已被:浏览 203次   下载 123
投稿时间:2024-02-01    修订日期:2024-03-22
中文摘要: 针对DBSCAN密度聚类算法分析电力设备位置信息时需要手动设置超参数,在分析对象数量差异较大时,预设的超参数会对聚类结果产生显著影响等问题。本研究选择轮廓系数作为聚类结果评价指标,并引入粒子群优化算法(PSO)自动确定合理的Eps和MinPts参数值,使其更好地适应不同数据特征。通过PSO-DBSCAN对电力设备位置数据进行聚类分析,实验结果表明,所提出的方法在聚类效果上表现良好。该方法成功地克服了手动设置超参数可能引起的聚类结果不稳定性的问题,取得了显著的进展。这一研究为电力系统管理提供了一种更智能、自适应的密度聚类分析方法,克服了传统手动设置超参数的不足,为电力设备位置信息分析提供了可靠而高效的解决方案,为电力系统的管理和优化带来了新的思路和工具。
Abstract:In the analysis of power equipment location information using the DBSCAN density clustering algorithm, manual parameter tuning is required, leading to significant impacts on clustering results, especially when dealing with varying quantities of analysis objects. This study adopts the silhouette coefficient as the evaluation metric for clustering results and introduces the Particle Swarm Optimization (PSO) algorithm to automatically determine reasonable values for the Eps and MinPts parameters. This adaptation allows the algorithm to better accommodate diverse data characteristics. Through PSO-DBSCAN clustering analysis of power equipment location data, experimental results indicate that the proposed method performs well in terms of clustering effectiveness. The approach successfully addresses the issue of instability in clustering results caused by manually setting parameters, achieving significant progress. This research provides an intelligent and adaptive density clustering analysis method for power system management, overcoming the limitations of traditional manual parameter tuning. It offers a reliable and efficient solution for the analysis of power equipment location information, presenting new perspectives and tools for the management and optimization of power systems.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: