###
DOI:
电力大数据:2023,26(12):-
←前一篇   |   后一篇→
本文二维码信息
基于改进YOLOv5和DBSCAN聚类的变电站压板识别方法
(南方电网人工智能科技有限公司)
Substation Strap Identification Method Based on Improved YOLOv5 and DBSCAN Clustering
SHU Ning1, TANG Qinghua2,3, ZHAO Bimei2,3
(1.China Southern Power Grid Artificial Intelligence Technology Co., Ltd;2.China Southern Power Grid Artificial Intelligence Technology Co,Ltd;3.Guangdong,China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 230次   下载 392
投稿时间:2024-01-08    修订日期:2024-01-19
中文摘要: 本文提出了一种基于改进YOLOv5和DBSCN聚类方法的变电站压板智能识别方法,旨在实现压板开关状态的智能监控和高效管理。针对压板开关目标较小、分布密集的特点,对原生YOLOv5网络进行改进,增加检测头以提升小目标检测能力,并采用EIOU损失函数优化目标框定位精度。结合DBSCAN聚类方法,对检测出的目标框中心点进行聚类,并根据相对位置排列每个压板的目标框。通过比对“四表一指南”中的开合状态,实现所有压板开关的智能比对,该方法可提高监控准确性和管理效率,降低人工干预成本,为电力系统的安全稳定运行提供有力支持。
中文关键词: 变电压板  目标检测  模型聚类  YOLOv5
Abstract:The article proposes an intelligent recognition method for transformer substation straps based on an improved YOLOv5 and DBSCAN clustering approach. The aim is to achieve intelligent monitoring and efficient management of the switch status of straps. To address the small and densely distributed target of strap switches, the original YOLOv5 network is improved by adding detection heads to enhance the ability to detect small targets, and the EIOU loss function is used to optimize the accuracy of target box localization. By combining with the DBSCAN clustering method, the center points of the detected target boxes are clustered, and each strap''s target box is arranged according to their relative positions. By comparing the switch status in the four tables and one guide, intelligent comparison of all strap switches is achieved. This method can improve monitoring accuracy and management efficiency, reduce manual intervention costs, and provide strong support for the safe and stable operation of the power system.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: