###
DOI:
电力大数据:2023,26(12):-
←前一篇   |   后一篇→
本文二维码信息
基于EMD-SE-LSTM模型的火电机组振动预测
(1.华北电力大学能源动力与机械工程学院;2.国家能源集团国神技术研究院)
Vibration prediction of thermal power units based on EMD-SE-LSTM model
PENG Maofeng1, SONG Guangxiong1, QI Zhantong1, DUAN Caili2,3,4
(1.School of Energy, Power and Mechanical Engineering, North China Electric Power University;2.Guoshen Technical Research Institute,CHN Energy Group,Xi''3.''4.anShanxi,China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 184次   下载 258
投稿时间:2023-12-15    修订日期:2023-12-31
中文摘要: 在电厂中,汽轮机发生故障时通常会出现轴承振动异常的情况。为了在故障发生之前采取预防措施,准确预测汽轮机轴承振动成为预防故障的基础。然而,振动数据的强烈波动性导致了难以进行准确的预测。为解决这一问题,首先利用经验模态分解(EMD)将振动信号分解成多个分量,然后利用样本熵(SE)对这些分量进行分析,并将所得到的分量重构为趋势信号和波动信号。接着,利用具有注意力机制的长短时记忆网络(LSTM-Attention),将轴承振动相关的测点数据作为辅助变量输入,分别对趋势信号和波动信号进行预测。最后,将所得到的趋势信号和波动信号结果相叠加,得出预测的振动数据。为验证该模型的可行性和准确性,我们以西北某电厂的真实运行数据为例进行了实验。实验结果显示,所提出的模型相较于传统模型具有更小的误差。
Abstract:In power plants, abnormal bearing vibrations often occur when a turbine malfunctions. To take preventive measures before such malfunctions happen, accurately predicting turbine bearing vibrations becomes the foundation for fault prevention. However, the significant fluctuation in vibration data makes precise prediction challenging. To address this issue, the approach involves initially decomposing the vibration signal into multiple components using Empirical Mode Decomposition (EMD). Subsequently, these components are analyzed using Sample Entropy (SE), and the resulting components are reconstructed into trend and fluctuation signals. Next, employing Long Short-Term Memory networks with an attention mechanism (LSTM-Attention), the vibration-related measurement data of bearings are used as auxiliary variables to individually forecast the trend and fluctuation signals. Finally, the forecasted trend and fluctuation signals are combined to obtain the predicted vibration data. To validate the feasibility and accuracy of this model, experiments were conducted using real operational data from a power plant in Northwest China. The experimental results demonstrate that the proposed model exhibits smaller errors compared to traditional models.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本: