###
DOI:
电力大数据:2023,26(12):-
←前一篇   |   后一篇→
本文二维码信息
基于VMD-INFORMER-LOF算法的变频器故障提前预警研究
(1.鲁东大学 数学与统计科学学院;2.鲁东大学 信息与电气工程学院)
Research on Early Warning of Wind Turbine Converter Faults based on VMD-INFORMER-LOF
huang xiang-geng1, zhang xin-ping1, wang ying-hui2, zhu duo-ming3, zhao wei1, song mei1
(1.School of Mathematics and Statistical Science,Ludong University;2.School of Information and Electrical Engineering, Ludong University;3.School of Information and Electrical Engineering,Ludong University)
摘要
图/表
参考文献
相似文献
本文已被:浏览 205次   下载 239
投稿时间:2023-11-24    修订日期:2024-01-11
中文摘要: 针对风电机组变频器故障时常伴随剧烈温度变化的特点,本文提出一种基于VMD-Informer-LOF算法的故障检测方法。方案综合考虑风机状态变量对变频器的影响,利用变分模态分解(Variational Mode Decomposition, VMD)提取电流电压等电信号的平稳变化分量与高频干扰噪声,并结合Permutation Importance筛选对温度具有高灵敏性的变量。同时,基于故障时温度呈现为过低温,或过高温的特点,将Informer预测温度值和SCADA(Supervisory Control And Data Acquisition)系统实测值重组为二维序列,结合局部异常因子(Local outlier factor, LOF)算法识别变频器不同状态下的温度模式,进而实现高效的异常识别。经实验验证,本文所提出的VMD-Informer模型的温度预测拟合优度能够达到0.9841,效果优于LSTM(Long Short Term Memory)、XGBoost(Extreme Gradient Boosting)等时序预测方法;同时,结合滑动窗口划分数据,LOF算法能够有效对窗口内异常数据进行识别,在故障率阈值为0.2的情况下,能够实现提前约14小时发现故障,显著提高了故障预警效果。
Abstract:In view of the characteristic that the converter failure of wind turbines is often accompanied by severe temperature changes, this paper proposes a fault detection method based on VMD-Informer-LOF algorithm. Considering the impact of wind turbine state variables on the converter, this paper utilizes Variational Mode Decomposition (VMD) to extract the steady-state components and high-frequency interference noise from electrical signals such as current and voltage. Additionally, Permutation Importance is employed to select variables highly sensitive to temperature. Moreover, leveraging the characteristic temperature extremes during faults (either too low or too high), the paper reorganizes the predicted temperature values from the Informer model and the actual values from the SCADA (Supervisory Control And Data Acquisition system) into a two-dimensional sequence. The Local Outlier Factor (LOF) algorithm is then applied to identify temperature patterns under different states of the converter, enabling efficient anomaly detection. Experimental validation demonstrates that the proposed VMD-Informer model achieves a temperature prediction coefficient of determination with 0.9841, outperforming time-series prediction methods such as LSTM and XGBoost. Furthermore, when combined with sliding window data partitioning, the LOF algorithm effectively identifies anomalous data within the window. Under a fault rate threshold of 0.2, it can detect faults approximately 14 hours in advance, significantly enhancing fault warning effectiveness.
文章编号:     中图分类号:    文献标志码:
基金项目:2023年国家级大学生创新创业训练计划项目(202310451192)
引用文本: