本文已被:浏览 263次 下载 796次
投稿时间:2023-10-26 修订日期:2023-11-10
投稿时间:2023-10-26 修订日期:2023-11-10
中文摘要: 充分挖掘电力系统潜在的灵活性资源可有效提高系统中可再生能源的消纳。碳捕集电厂可降低电力系统中碳排放的同时提供潜在的灵活调节能力。基于此,本文建立需求响应与碳捕集电厂的灵活调节模型,并引入到电力系统的调度运行,提出计及碳捕集电厂灵活运行与需求响应的多时间尺度调度方法,以最小化系统的运行总成本。日前调度阶段,采用需求响应、碳捕集电厂灵活调节来时移负荷需求,以实现系统低碳经济运行的目标;日内调度阶段,采用预测控制模型来矫正日前调度计划,以保证实时功率平衡。研究结果显示需求响应和碳捕集电厂灵活运行可提高系统的可再生能源消纳量,同时分别降低18.7%和1.4%的总成本;此外,协同碳捕集电厂、需求响应可将系统的总成本降低20.1%。数据证明需求响应、碳捕集电厂在提高电力系统可再生能源消纳量和降低总成本方面具有显著的效果。
Abstract:Fully excavating the flexibility potential of the power system systems can effectively improve its renewable energy consumption. The carbon capture power plant can not only reduce carbon emissions in power systems but also provide a potential flexible regulation capacity. Accordingly, this paper establishes the flexible regulation models of the demand response and the carbon capture power plant and then introduces them to the scheduling operation of power systems. A multi-time scale rolling optimization method considering the multi-flexible resources is proposed to minimize the total operating cost of the power system. In the day-ahead scheduling stage, the demand response and flexible regulation of the carbon capture power plant are used to shift load demand to achieve the low-carbon economic operation of power systems. In the intra-day scheduling stage, model predictive control is employed to correct the day-ahead scheduling plan to ensure real-time power balance. The results show that the demand response and the flexible regulation of carbon capture power plants can increase the consumption of renewable energy and then reduce the total cost by 18.7% and 1.4%, respectively. In addition, the synergy between the carbon capture power plant and the demand response can reduce the total cost of the power system by 20.1%. The study results testify that the demand response and the carbon capture power plant can significantly increase renewable energy consumption and reduce the total cost of power systems.
keywords: renewable energy consumption carbon capture power plant demand response multiple time scales optimization scheduling model predictive control
文章编号: 中图分类号: 文献标志码:
基金项目:国家自然科学(51867005);黔科合支撑[2022]一般013;黔科合平台人才-GCC[2022]016-1;黔教技[2022]043号
作者 | 单位 | |
蔡权* | 贵州电网有限责任公司 | 2846649344@qq.com |
张靖 | 贵州大学电气工程学院 | |
严儒井 | 贵州大学电气工程学院 | |
何宇 | 贵州大学电气工程学院 | |
范俊秋 | 贵州电网有限责任公司 | |
吴洪学 | 贵州电网有限责任公司 |
引用文本: